mturk24 commited on
Commit
cd296d6
·
verified ·
1 Parent(s): 2b62ebf

Update README.MD

Browse files
Files changed (1) hide show
  1. README.MD +75 -11
README.MD CHANGED
@@ -1,4 +1,3 @@
1
- ```markdown
2
  ---
3
  license: mit
4
  task_categories:
@@ -9,6 +8,7 @@ tags:
9
  - computer-vision
10
  - cleanlab
11
  - data-centric-ai
 
12
  pretty_name: Object Detection Tutorial Dataset
13
  size_categories:
14
  - n<1K
@@ -16,15 +16,22 @@ size_categories:
16
 
17
  # Object Detection Tutorial Dataset
18
 
19
- Dataset used in cleanlab's [Object Detection tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html).
20
 
21
- ## Dataset Contents
22
 
23
- - **labels.pkl**: Ground truth bounding box labels
24
- - **predictions.pkl**: Model predictions for bounding boxes
25
- - **example_images.zip**: Sample images for object detection
26
 
27
- ## Usage
 
 
 
 
 
 
 
 
 
28
 
29
  ```python
30
  from huggingface_hub import hf_hub_download
@@ -41,14 +48,70 @@ predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predic
41
  with open(predictions_path, 'rb') as f:
42
  predictions = pickle.load(f)
43
 
44
- # Download images
45
  images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
46
  with zipfile.ZipFile(images_path, 'r') as zip_ref:
47
  zip_ref.extractall('example_images/')
48
  ```
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  ## Citation
51
 
 
 
52
  ```bibtex
53
  @software{cleanlab,
54
  author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
@@ -60,6 +123,7 @@ with zipfile.ZipFile(images_path, 'r') as zip_ref:
60
 
61
  ## Contact
62
 
63
- - Repository: https://github.com/cleanlab/cleanlab
64
- - Documentation: https://docs.cleanlab.ai
65
- ```
 
 
 
1
  ---
2
  license: mit
3
  task_categories:
 
8
  - computer-vision
9
  - cleanlab
10
  - data-centric-ai
11
+ - bounding-boxes
12
  pretty_name: Object Detection Tutorial Dataset
13
  size_categories:
14
  - n<1K
 
16
 
17
  # Object Detection Tutorial Dataset
18
 
19
+ ## Dataset Description
20
 
21
+ This dataset contains object detection annotations and predictions used in the cleanlab tutorial: [Object Detection](https://docs.cleanlab.ai/stable/tutorials/object_detection.html).
22
 
23
+ The dataset demonstrates how to use cleanlab to identify and correct label issues in object detection datasets, where labels consist of bounding boxes around objects in images.
 
 
24
 
25
+ ### Dataset Summary
26
+
27
+ - **Total Examples**: 118 images with bounding box annotations
28
+ - **Task**: Object detection with bounding boxes
29
+ - **Files**:
30
+ - `labels.pkl`: Ground truth bounding box labels
31
+ - `predictions.pkl`: Model predictions for bounding boxes
32
+ - `example_images.zip`: Sample images for object detection
33
+
34
+ ### Dataset Structure
35
 
36
  ```python
37
  from huggingface_hub import hf_hub_download
 
48
  with open(predictions_path, 'rb') as f:
49
  predictions = pickle.load(f)
50
 
51
+ # Download and extract images
52
  images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
53
  with zipfile.ZipFile(images_path, 'r') as zip_ref:
54
  zip_ref.extractall('example_images/')
55
  ```
56
 
57
+ ### Data Format
58
+
59
+ - **labels.pkl**: Dictionary containing ground truth bounding boxes in format `[x_min, y_min, x_max, y_max, class_id]`
60
+ - **predictions.pkl**: Dictionary containing predicted bounding boxes with confidence scores
61
+ - **example_images.zip**: Compressed folder containing image files
62
+
63
+ ## Dataset Creation
64
+
65
+ This dataset was created for educational purposes to demonstrate cleanlab's capabilities for detecting issues in object detection datasets, such as:
66
+ - Incorrectly labeled bounding boxes
67
+ - Missing annotations
68
+ - Poor quality predictions
69
+ - Annotation inconsistencies
70
+
71
+ ## Uses
72
+
73
+ ### Primary Use Case
74
+
75
+ This dataset is designed for:
76
+ 1. Learning data-centric AI techniques for object detection
77
+ 2. Demonstrating cleanlab's object detection issue detection
78
+ 3. Teaching proper annotation quality assessment workflows
79
+
80
+ ### Example Usage
81
+
82
+ ```python
83
+ from huggingface_hub import hf_hub_download
84
+ import pickle
85
+ from cleanlab.object_detection.summary import object_detection_health_summary
86
+
87
+ # Download files
88
+ labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl')
89
+ predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl')
90
+
91
+ # Load data
92
+ with open(labels_path, 'rb') as f:
93
+ labels = pickle.load(f)
94
+ with open(predictions_path, 'rb') as f:
95
+ predictions = pickle.load(f)
96
+
97
+ # Use cleanlab to analyze object detection data quality
98
+ summary = object_detection_health_summary(labels, predictions)
99
+ print(summary)
100
+ ```
101
+
102
+ ## Tutorial
103
+
104
+ For a complete tutorial using this dataset, see:
105
+ [Object Detection Tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html)
106
+
107
+ ## Licensing Information
108
+
109
+ MIT License
110
+
111
  ## Citation
112
 
113
+ If you use this dataset in your research, please cite the cleanlab library:
114
+
115
  ```bibtex
116
  @software{cleanlab,
117
  author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
 
123
 
124
  ## Contact
125
 
126
+ - **Maintainers**: Cleanlab Team
127
+ - **Repository**: https://github.com/cleanlab/cleanlab
128
+ - **Documentation**: https://docs.cleanlab.ai
129
+ - **Issues**: https://github.com/cleanlab/cleanlab/issues