Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
License:
Update README.MD
Browse files
README.MD
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
```markdown
|
| 2 |
---
|
| 3 |
license: mit
|
| 4 |
task_categories:
|
|
@@ -9,6 +8,7 @@ tags:
|
|
| 9 |
- computer-vision
|
| 10 |
- cleanlab
|
| 11 |
- data-centric-ai
|
|
|
|
| 12 |
pretty_name: Object Detection Tutorial Dataset
|
| 13 |
size_categories:
|
| 14 |
- n<1K
|
|
@@ -16,15 +16,22 @@ size_categories:
|
|
| 16 |
|
| 17 |
# Object Detection Tutorial Dataset
|
| 18 |
|
| 19 |
-
Dataset
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
- **predictions.pkl**: Model predictions for bounding boxes
|
| 25 |
-
- **example_images.zip**: Sample images for object detection
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
```python
|
| 30 |
from huggingface_hub import hf_hub_download
|
|
@@ -41,14 +48,70 @@ predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predic
|
|
| 41 |
with open(predictions_path, 'rb') as f:
|
| 42 |
predictions = pickle.load(f)
|
| 43 |
|
| 44 |
-
# Download images
|
| 45 |
images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
|
| 46 |
with zipfile.ZipFile(images_path, 'r') as zip_ref:
|
| 47 |
zip_ref.extractall('example_images/')
|
| 48 |
```
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
## Citation
|
| 51 |
|
|
|
|
|
|
|
| 52 |
```bibtex
|
| 53 |
@software{cleanlab,
|
| 54 |
author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
|
|
@@ -60,6 +123,7 @@ with zipfile.ZipFile(images_path, 'r') as zip_ref:
|
|
| 60 |
|
| 61 |
## Contact
|
| 62 |
|
| 63 |
-
-
|
| 64 |
-
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
task_categories:
|
|
|
|
| 8 |
- computer-vision
|
| 9 |
- cleanlab
|
| 10 |
- data-centric-ai
|
| 11 |
+
- bounding-boxes
|
| 12 |
pretty_name: Object Detection Tutorial Dataset
|
| 13 |
size_categories:
|
| 14 |
- n<1K
|
|
|
|
| 16 |
|
| 17 |
# Object Detection Tutorial Dataset
|
| 18 |
|
| 19 |
+
## Dataset Description
|
| 20 |
|
| 21 |
+
This dataset contains object detection annotations and predictions used in the cleanlab tutorial: [Object Detection](https://docs.cleanlab.ai/stable/tutorials/object_detection.html).
|
| 22 |
|
| 23 |
+
The dataset demonstrates how to use cleanlab to identify and correct label issues in object detection datasets, where labels consist of bounding boxes around objects in images.
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
### Dataset Summary
|
| 26 |
+
|
| 27 |
+
- **Total Examples**: 118 images with bounding box annotations
|
| 28 |
+
- **Task**: Object detection with bounding boxes
|
| 29 |
+
- **Files**:
|
| 30 |
+
- `labels.pkl`: Ground truth bounding box labels
|
| 31 |
+
- `predictions.pkl`: Model predictions for bounding boxes
|
| 32 |
+
- `example_images.zip`: Sample images for object detection
|
| 33 |
+
|
| 34 |
+
### Dataset Structure
|
| 35 |
|
| 36 |
```python
|
| 37 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 48 |
with open(predictions_path, 'rb') as f:
|
| 49 |
predictions = pickle.load(f)
|
| 50 |
|
| 51 |
+
# Download and extract images
|
| 52 |
images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
|
| 53 |
with zipfile.ZipFile(images_path, 'r') as zip_ref:
|
| 54 |
zip_ref.extractall('example_images/')
|
| 55 |
```
|
| 56 |
|
| 57 |
+
### Data Format
|
| 58 |
+
|
| 59 |
+
- **labels.pkl**: Dictionary containing ground truth bounding boxes in format `[x_min, y_min, x_max, y_max, class_id]`
|
| 60 |
+
- **predictions.pkl**: Dictionary containing predicted bounding boxes with confidence scores
|
| 61 |
+
- **example_images.zip**: Compressed folder containing image files
|
| 62 |
+
|
| 63 |
+
## Dataset Creation
|
| 64 |
+
|
| 65 |
+
This dataset was created for educational purposes to demonstrate cleanlab's capabilities for detecting issues in object detection datasets, such as:
|
| 66 |
+
- Incorrectly labeled bounding boxes
|
| 67 |
+
- Missing annotations
|
| 68 |
+
- Poor quality predictions
|
| 69 |
+
- Annotation inconsistencies
|
| 70 |
+
|
| 71 |
+
## Uses
|
| 72 |
+
|
| 73 |
+
### Primary Use Case
|
| 74 |
+
|
| 75 |
+
This dataset is designed for:
|
| 76 |
+
1. Learning data-centric AI techniques for object detection
|
| 77 |
+
2. Demonstrating cleanlab's object detection issue detection
|
| 78 |
+
3. Teaching proper annotation quality assessment workflows
|
| 79 |
+
|
| 80 |
+
### Example Usage
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from huggingface_hub import hf_hub_download
|
| 84 |
+
import pickle
|
| 85 |
+
from cleanlab.object_detection.summary import object_detection_health_summary
|
| 86 |
+
|
| 87 |
+
# Download files
|
| 88 |
+
labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl')
|
| 89 |
+
predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl')
|
| 90 |
+
|
| 91 |
+
# Load data
|
| 92 |
+
with open(labels_path, 'rb') as f:
|
| 93 |
+
labels = pickle.load(f)
|
| 94 |
+
with open(predictions_path, 'rb') as f:
|
| 95 |
+
predictions = pickle.load(f)
|
| 96 |
+
|
| 97 |
+
# Use cleanlab to analyze object detection data quality
|
| 98 |
+
summary = object_detection_health_summary(labels, predictions)
|
| 99 |
+
print(summary)
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## Tutorial
|
| 103 |
+
|
| 104 |
+
For a complete tutorial using this dataset, see:
|
| 105 |
+
[Object Detection Tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html)
|
| 106 |
+
|
| 107 |
+
## Licensing Information
|
| 108 |
+
|
| 109 |
+
MIT License
|
| 110 |
+
|
| 111 |
## Citation
|
| 112 |
|
| 113 |
+
If you use this dataset in your research, please cite the cleanlab library:
|
| 114 |
+
|
| 115 |
```bibtex
|
| 116 |
@software{cleanlab,
|
| 117 |
author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
|
|
|
|
| 123 |
|
| 124 |
## Contact
|
| 125 |
|
| 126 |
+
- **Maintainers**: Cleanlab Team
|
| 127 |
+
- **Repository**: https://github.com/cleanlab/cleanlab
|
| 128 |
+
- **Documentation**: https://docs.cleanlab.ai
|
| 129 |
+
- **Issues**: https://github.com/cleanlab/cleanlab/issues
|