--- license: mit task_categories: - object-detection language: - en tags: - computer-vision - cleanlab - data-centric-ai - bounding-boxes pretty_name: Object Detection Tutorial Dataset size_categories: - n<1K --- # Object Detection Tutorial Dataset ## Dataset Description This dataset contains object detection annotations and predictions used in the cleanlab tutorial: [Object Detection](https://docs.cleanlab.ai/stable/tutorials/object_detection.html). The dataset demonstrates how to use cleanlab to identify and correct label issues in object detection datasets, where labels consist of bounding boxes around objects in images. ### Dataset Summary - **Total Examples**: 118 images with bounding box annotations - **Task**: Object detection with bounding boxes - **Files**: - `labels.pkl`: Ground truth bounding box labels - `predictions.pkl`: Model predictions for bounding boxes - `example_images.zip`: Sample images for object detection ### Dataset Structure ```python from huggingface_hub import hf_hub_download import pickle import zipfile # Download labels labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl') with open(labels_path, 'rb') as f: labels = pickle.load(f) # Download predictions predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl') with open(predictions_path, 'rb') as f: predictions = pickle.load(f) # Download and extract images images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip') with zipfile.ZipFile(images_path, 'r') as zip_ref: zip_ref.extractall('example_images/') ``` ### Data Format - **labels.pkl**: Dictionary containing ground truth bounding boxes in format `[x_min, y_min, x_max, y_max, class_id]` - **predictions.pkl**: Dictionary containing predicted bounding boxes with confidence scores - **example_images.zip**: Compressed folder containing image files ## Dataset Creation This dataset was created for educational purposes to demonstrate cleanlab's capabilities for detecting issues in object detection datasets, such as: - Incorrectly labeled bounding boxes - Missing annotations - Poor quality predictions - Annotation inconsistencies ## Uses ### Primary Use Case This dataset is designed for: 1. Learning data-centric AI techniques for object detection 2. Demonstrating cleanlab's object detection issue detection 3. Teaching proper annotation quality assessment workflows ### Example Usage ```python from huggingface_hub import hf_hub_download import pickle from cleanlab.object_detection.summary import object_detection_health_summary # Download files labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl') predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl') # Load data with open(labels_path, 'rb') as f: labels = pickle.load(f) with open(predictions_path, 'rb') as f: predictions = pickle.load(f) # Use cleanlab to analyze object detection data quality summary = object_detection_health_summary(labels, predictions) print(summary) ``` ## Tutorial For a complete tutorial using this dataset, see: [Object Detection Tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html) ## Licensing Information MIT License ## Citation If you use this dataset in your research, please cite the cleanlab library: ```bibtex @software{cleanlab, author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas}, title = {cleanlab}, year = {2021}, url = {https://github.com/cleanlab/cleanlab}, } ``` ## Contact - **Maintainers**: Cleanlab Team - **Repository**: https://github.com/cleanlab/cleanlab - **Documentation**: https://docs.cleanlab.ai - **Issues**: https://github.com/cleanlab/cleanlab/issues