new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space

Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.

  • 8 authors
·
May 21 3

Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space

Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.

  • 5 authors
·
Jun 27, 2024

Concept Lancet: Image Editing with Compositional Representation Transplant

Diffusion models are widely used for image editing tasks. Existing editing methods often design a representation manipulation procedure by curating an edit direction in the text embedding or score space. However, such a procedure faces a key challenge: overestimating the edit strength harms visual consistency while underestimating it fails the editing task. Notably, each source image may require a different editing strength, and it is costly to search for an appropriate strength via trial-and-error. To address this challenge, we propose Concept Lancet (CoLan), a zero-shot plug-and-play framework for principled representation manipulation in diffusion-based image editing. At inference time, we decompose the source input in the latent (text embedding or diffusion score) space as a sparse linear combination of the representations of the collected visual concepts. This allows us to accurately estimate the presence of concepts in each image, which informs the edit. Based on the editing task (replace/add/remove), we perform a customized concept transplant process to impose the corresponding editing direction. To sufficiently model the concept space, we curate a conceptual representation dataset, CoLan-150K, which contains diverse descriptions and scenarios of visual terms and phrases for the latent dictionary. Experiments on multiple diffusion-based image editing baselines show that methods equipped with CoLan achieve state-of-the-art performance in editing effectiveness and consistency preservation.

  • 6 authors
·
Apr 3 3

Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery

Concept Bottleneck Models (CBMs) have recently been proposed to address the 'black-box' problem of deep neural networks, by first mapping images to a human-understandable concept space and then linearly combining concepts for classification. Such models typically require first coming up with a set of concepts relevant to the task and then aligning the representations of a feature extractor to map to these concepts. However, even with powerful foundational feature extractors like CLIP, there are no guarantees that the specified concepts are detectable. In this work, we leverage recent advances in mechanistic interpretability and propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm: instead of pre-selecting concepts based on the downstream classification task, we use sparse autoencoders to first discover concepts learnt by the model, and then name them and train linear probes for classification. Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model. We perform a comprehensive evaluation across multiple datasets and CLIP architectures and show that our method yields semantically meaningful concepts, assigns appropriate names to them that make them easy to interpret, and yields performant and interpretable CBMs. Code available at https://github.com/neuroexplicit-saar/discover-then-name.

  • 4 authors
·
Jul 19, 2024

Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs

Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.

  • 9 authors
·
May 21 2

Analyzing Transformer Dynamics as Movement through Embedding Space

Transformer based language models exhibit intelligent behaviors such as understanding natural language, recognizing patterns, acquiring knowledge, reasoning, planning, reflecting and using tools. This paper explores how their underlying mechanics give rise to intelligent behaviors. Towards that end, we propose framing Transformer dynamics as movement through embedding space. Examining Transformers through this perspective reveals key insights, establishing a Theory of Transformers: 1) Intelligent behaviours map to paths in Embedding Space which, the Transformer random-walks through during inferencing. 2) LM training learns a probability distribution over all possible paths. `Intelligence' is learnt by assigning higher probabilities to paths representing intelligent behaviors. No learning can take place in-context; context only narrows the subset of paths sampled during decoding. 5) The Transformer is a self-mapping composition function, folding a context sequence into a context-vector such that it's proximity to a token-vector reflects its co-occurrence and conditioned probability. Thus, the physical arrangement of vectors in Embedding Space determines path probabilities. 6) Context vectors are composed by aggregating features of the sequence's tokens via a process we call the encoding walk. Attention contributes a - potentially redundant - association-bias to this process. 7) This process is comprised of two principal operation types: filtering (data independent) and aggregation (data dependent). This generalization unifies Transformers with other sequence models. Building upon this foundation, we formalize a popular semantic interpretation of embeddings into a ``concept-space theory'' and find some evidence of it's validity.

  • 1 authors
·
Aug 21, 2023

A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis

While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations. We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images. A key finding we show empirically is that existing visual backbones lack an appropriate prior from the architecture for reliable generalization in these settings. Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language. To this end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that incorporates knowledge priors that constrain it to reason with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses retrieval-augmented language models to design an appropriate concept space paired with an automatic training procedure for recognizing the concept. We evaluate different resources of knowledge and recognition architectures on a broad range of domain shifts across 20 datasets. In our comprehensive evaluation with two imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets by 32.4% on average. Finally, evaluations reveal that PubMed is a promising resource for making medical models less sensitive to domain shift, outperforming other resources on both diversity of information and final prediction performance.

  • 8 authors
·
May 23, 2024

Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision

Deep neural networks have demonstrated promising performance on image recognition tasks. However, they may heavily rely on confounding factors, using irrelevant artifacts or bias within the dataset as the cue to improve performance. When a model performs decision-making based on these spurious correlations, it can become untrustable and lead to catastrophic outcomes when deployed in the real-world scene. In this paper, we explore and try to solve this problem in the context of skin cancer diagnosis. We introduce a human-in-the-loop framework in the model training process such that users can observe and correct the model's decision logic when confounding behaviors happen. Specifically, our method can automatically discover confounding factors by analyzing the co-occurrence behavior of the samples. It is capable of learning confounding concepts using easily obtained concept exemplars. By mapping the black-box model's feature representation onto an explainable concept space, human users can interpret the concept and intervene via first order-logic instruction. We systematically evaluate our method on our newly crafted, well-controlled skin lesion dataset and several public skin lesion datasets. Experiments show that our method can effectively detect and remove confounding factors from datasets without any prior knowledge about the category distribution and does not require fully annotated concept labels. We also show that our method enables the model to focus on clinical-related concepts, improving the model's performance and trustworthiness during model inference.

  • 8 authors
·
Mar 1, 2023

Modeling Collaborator: Enabling Subjective Vision Classification With Minimal Human Effort via LLM Tool-Use

From content moderation to wildlife conservation, the number of applications that require models to recognize nuanced or subjective visual concepts is growing. Traditionally, developing classifiers for such concepts requires substantial manual effort measured in hours, days, or even months to identify and annotate data needed for training. Even with recently proposed Agile Modeling techniques, which enable rapid bootstrapping of image classifiers, users are still required to spend 30 minutes or more of monotonous, repetitive data labeling just to train a single classifier. Drawing on Fiske's Cognitive Miser theory, we propose a new framework that alleviates manual effort by replacing human labeling with natural language interactions, reducing the total effort required to define a concept by an order of magnitude: from labeling 2,000 images to only 100 plus some natural language interactions. Our framework leverages recent advances in foundation models, both large language models and vision-language models, to carve out the concept space through conversation and by automatically labeling training data points. Most importantly, our framework eliminates the need for crowd-sourced annotations. Moreover, our framework ultimately produces lightweight classification models that are deployable in cost-sensitive scenarios. Across 15 subjective concepts and across 2 public image classification datasets, our trained models outperform traditional Agile Modeling as well as state-of-the-art zero-shot classification models like ALIGN, CLIP, CuPL, and large visual question-answering models like PaLI-X.

  • 13 authors
·
Mar 4, 2024 1

ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance

Recent text-to-image customization works have been proven successful in generating images of given concepts by fine-tuning the diffusion models on a few examples. However, these methods tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (e.g. headphone is missing when generating a <sks> dog wearing a headphone'). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (e.g. a dog wearing a headphone) implying that the compositional ability only disappears after personalization tuning. Inspired by this observation, we present ClassDiffusion, a simple technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept. Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of the fine-tune models. In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric, a more equitable and effective evaluation metric for this particular domain. We also provide in-depth empirical study and theoretical analysis to better understand the role of the proposed loss. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.

  • 6 authors
·
May 27, 2024

LLMs are Single-threaded Reasoners: Demystifying the Working Mechanism of Soft Thinking

Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce randomness, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.

  • 7 authors
·
Aug 5

A Neural Space-Time Representation for Text-to-Image Personalization

A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.

  • 4 authors
·
May 24, 2023

Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces

The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance for mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general methodology for eliciting directions in the parameter space (termed "concept vectors") that encode concrete concepts, and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors, while directly ablating these vectors demonstrably removes the associated knowledge from the LLMs and significantly reduces their susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parametric-based evaluations. To support this, we release our code and benchmark at https://github.com/yihuaihong/ConceptVectors.

  • 5 authors
·
Jun 17, 2024 2

SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model

AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.

  • 7 authors
·
Jul 31

Large Concept Models: Language Modeling in a Sentence Representation Space

LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single words, to analyze information and to generate creative content. In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept. Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow. Hence, we build a "Large Concept Model". In this study, as proof of feasibility, we assume that a concept corresponds to a sentence, and use an existing sentence embedding space, SONAR, which supports up to 200 languages in both text and speech modalities. The Large Concept Model is trained to perform autoregressive sentence prediction in an embedding space. We explore multiple approaches, namely MSE regression, variants of diffusion-based generation, and models operating in a quantized SONAR space. These explorations are performed using 1.6B parameter models and training data in the order of 1.3T tokens. We then scale one architecture to a model size of 7B parameters and training data of about 2.7T tokens. We perform an experimental evaluation on several generative tasks, namely summarization and a new task of summary expansion. Finally, we show that our model exhibits impressive zero-shot generalization performance to many languages, outperforming existing LLMs of the same size. The training code of our models is freely available.

  • 21 authors
·
Dec 11, 2024 1

$λ$-ECLIPSE: Multi-Concept Personalized Text-to-Image Diffusion Models by Leveraging CLIP Latent Space

Despite the recent advances in personalized text-to-image (P-T2I) generative models, subject-driven T2I remains challenging. The primary bottlenecks include 1) Intensive training resource requirements, 2) Hyper-parameter sensitivity leading to inconsistent outputs, and 3) Balancing the intricacies of novel visual concept and composition alignment. We start by re-iterating the core philosophy of T2I diffusion models to address the above limitations. Predominantly, contemporary subject-driven T2I approaches hinge on Latent Diffusion Models (LDMs), which facilitate T2I mapping through cross-attention layers. While LDMs offer distinct advantages, P-T2I methods' reliance on the latent space of these diffusion models significantly escalates resource demands, leading to inconsistent results and necessitating numerous iterations for a single desired image. Recently, ECLIPSE has demonstrated a more resource-efficient pathway for training UnCLIP-based T2I models, circumventing the need for diffusion text-to-image priors. Building on this, we introduce lambda-ECLIPSE. Our method illustrates that effective P-T2I does not necessarily depend on the latent space of diffusion models. lambda-ECLIPSE achieves single, multi-subject, and edge-guided T2I personalization with just 34M parameters and is trained on a mere 74 GPU hours using 1.6M image-text interleaved data. Through extensive experiments, we also establish that lambda-ECLIPSE surpasses existing baselines in composition alignment while preserving concept alignment performance, even with significantly lower resource utilization.

  • 4 authors
·
Feb 7, 2024 3

ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction

While personalized text-to-image generation has enabled the learning of a single concept from multiple images, a more practical yet challenging scenario involves learning multiple concepts within a single image. However, existing works tackling this scenario heavily rely on extensive human annotations. In this paper, we introduce a novel task named Unsupervised Concept Extraction (UCE) that considers an unsupervised setting without any human knowledge of the concepts. Given an image that contains multiple concepts, the task aims to extract and recreate individual concepts solely relying on the existing knowledge from pretrained diffusion models. To achieve this, we present ConceptExpress that tackles UCE by unleashing the inherent capabilities of pretrained diffusion models in two aspects. Specifically, a concept localization approach automatically locates and disentangles salient concepts by leveraging spatial correspondence from diffusion self-attention; and based on the lookup association between a concept and a conceptual token, a concept-wise optimization process learns discriminative tokens that represent each individual concept. Finally, we establish an evaluation protocol tailored for the UCE task. Extensive experiments demonstrate that ConceptExpress is a promising solution to the UCE task. Our code and data are available at: https://github.com/haoosz/ConceptExpress

  • 5 authors
·
Jul 9, 2024

MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection

Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. Despite recent attempts to design efficient and effective architecture backbone for multi-dimensional data, such as images and multivariate time series, existing models are either data independent, or fail to allow inter- and intra-dimension communication. Recently, State Space Models (SSMs), and more specifically Selective State Space Models, with efficient hardware-aware implementation, have shown promising potential for long sequence modeling. Motivated by the success of SSMs, we present MambaMixer, a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels, called Selective Token and Channel Mixer. MambaMixer connects selective mixers using a weighted averaging mechanism, allowing layers to have direct access to early features. As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block and explore their performance in various vision and time series forecasting tasks. Our results underline the importance of selective mixing across both tokens and channels. In ImageNet classification, object detection, and semantic segmentation tasks, ViM2 achieves competitive performance with well-established vision models and outperforms SSM-based vision models. In time series forecasting, TSM2 achieves outstanding performance compared to state-of-the-art methods while demonstrating significantly improved computational cost. These results show that while Transformers, cross-channel attention, and MLPs are sufficient for good performance in time series forecasting, neither is necessary.

  • 3 authors
·
Mar 28, 2024 1

OmniPrism: Learning Disentangled Visual Concept for Image Generation

Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes. However, existing methods are typically constrained to single-aspect concept generation or are easily disrupted by irrelevant concepts in multi-aspect concept scenarios, leading to concept confusion and hindering creative generation. To address this, we propose OmniPrism, a visual concept disentangling approach for creative image generation. Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts. We utilize the rich semantic space of a multimodal extractor to achieve concept disentanglement from given images and concept guidance. To disentangle concepts with different semantics, we construct a paired concept disentangled dataset (PCD-200K), where each pair shares the same concept such as content, style, and composition. We learn disentangled concept representations through our contrastive orthogonal disentangled (COD) training pipeline, which are then injected into additional diffusion cross-attention layers for generation. A set of block embeddings is designed to adapt each block's concept domain in the diffusion models. Extensive experiments demonstrate that our method can generate high-quality, concept-disentangled results with high fidelity to text prompts and desired concepts.

  • 7 authors
·
Dec 16, 2024

From Context to Concept: Exploring Semantic Relationships in Music with Word2Vec

We explore the potential of a popular distributional semantics vector space model, word2vec, for capturing meaningful relationships in ecological (complex polyphonic) music. More precisely, the skip-gram version of word2vec is used to model slices of music from a large corpus spanning eight musical genres. In this newly learned vector space, a metric based on cosine distance is able to distinguish between functional chord relationships, as well as harmonic associations in the music. Evidence, based on cosine distance between chord-pair vectors, suggests that an implicit circle-of-fifths exists in the vector space. In addition, a comparison between pieces in different keys reveals that key relationships are represented in word2vec space. These results suggest that the newly learned embedded vector representation does in fact capture tonal and harmonic characteristics of music, without receiving explicit information about the musical content of the constituent slices. In order to investigate whether proximity in the discovered space of embeddings is indicative of `semantically-related' slices, we explore a music generation task, by automatically replacing existing slices from a given piece of music with new slices. We propose an algorithm to find substitute slices based on spatial proximity and the pitch class distribution inferred in the chosen subspace. The results indicate that the size of the subspace used has a significant effect on whether slices belonging to the same key are selected. In sum, the proposed word2vec model is able to learn music-vector embeddings that capture meaningful tonal and harmonic relationships in music, thereby providing a useful tool for exploring musical properties and comparisons across pieces, as a potential input representation for deep learning models, and as a music generation device.

  • 3 authors
·
Nov 29, 2018

Pixel Reasoner: Incentivizing Pixel-Space Reasoning with Curiosity-Driven Reinforcement Learning

Chain-of-thought reasoning has significantly improved the performance of Large Language Models (LLMs) across various domains. However, this reasoning process has been confined exclusively to textual space, limiting its effectiveness in visually intensive tasks. To address this limitation, we introduce the concept of reasoning in the pixel-space. Within this novel framework, Vision-Language Models (VLMs) are equipped with a suite of visual reasoning operations, such as zoom-in and select-frame. These operations enable VLMs to directly inspect, interrogate, and infer from visual evidences, thereby enhancing reasoning fidelity for visual tasks. Cultivating such pixel-space reasoning capabilities in VLMs presents notable challenges, including the model's initially imbalanced competence and its reluctance to adopt the newly introduced pixel-space operations. We address these challenges through a two-phase training approach. The first phase employs instruction tuning on synthesized reasoning traces to familiarize the model with the novel visual operations. Following this, a reinforcement learning (RL) phase leverages a curiosity-driven reward scheme to balance exploration between pixel-space reasoning and textual reasoning. With these visual operations, VLMs can interact with complex visual inputs, such as information-rich images or videos to proactively gather necessary information. We demonstrate that this approach significantly improves VLM performance across diverse visual reasoning benchmarks. Our 7B model, \model, achieves 84\% on V* bench, 74\% on TallyQA-Complex, and 84\% on InfographicsVQA, marking the highest accuracy achieved by any open-source model to date. These results highlight the importance of pixel-space reasoning and the effectiveness of our framework.

  • 5 authors
·
May 21 2

SuperBPE: Space Travel for Language Models

The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.

  • 6 authors
·
Mar 17 3

Online hierarchical partitioning of the output space in extreme multi-label data stream

Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.

  • 4 authors
·
Jul 28

Concept-Based Explainable Artificial Intelligence: Metrics and Benchmarks

Concept-based explanation methods, such as concept bottleneck models (CBMs), aim to improve the interpretability of machine learning models by linking their decisions to human-understandable concepts, under the critical assumption that such concepts can be accurately attributed to the network's feature space. However, this foundational assumption has not been rigorously validated, mainly because the field lacks standardised metrics and benchmarks to assess the existence and spatial alignment of such concepts. To address this, we propose three metrics: the concept global importance metric, the concept existence metric, and the concept location metric, including a technique for visualising concept activations, i.e., concept activation mapping. We benchmark post-hoc CBMs to illustrate their capabilities and challenges. Through qualitative and quantitative experiments, we demonstrate that, in many cases, even the most important concepts determined by post-hoc CBMs are not present in input images; moreover, when they are present, their saliency maps fail to align with the expected regions by either activating across an entire object or misidentifying relevant concept-specific regions. We analyse the root causes of these limitations, such as the natural correlation of concepts. Our findings underscore the need for more careful application of concept-based explanation techniques especially in settings where spatial interpretability is critical.

  • 3 authors
·
Jan 31

All but One: Surgical Concept Erasing with Model Preservation in Text-to-Image Diffusion Models

Text-to-Image models such as Stable Diffusion have shown impressive image generation synthesis, thanks to the utilization of large-scale datasets. However, these datasets may contain sexually explicit, copyrighted, or undesirable content, which allows the model to directly generate them. Given that retraining these large models on individual concept deletion requests is infeasible, fine-tuning algorithms have been developed to tackle concept erasing in diffusion models. While these algorithms yield good concept erasure, they all present one of the following issues: 1) the corrupted feature space yields synthesis of disintegrated objects, 2) the initially synthesized content undergoes a divergence in both spatial structure and semantics in the generated images, and 3) sub-optimal training updates heighten the model's susceptibility to utility harm. These issues severely degrade the original utility of generative models. In this work, we present a new approach that solves all of these challenges. We take inspiration from the concept of classifier guidance and propose a surgical update on the classifier guidance term while constraining the drift of the unconditional score term. Furthermore, our algorithm empowers the user to select an alternative to the erasing concept, allowing for more controllability. Our experimental results show that our algorithm not only erases the target concept effectively but also preserves the model's generation capability.

  • 3 authors
·
Dec 20, 2023

Generalized Incremental Learning under Concept Drift across Evolving Data Streams

Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems. While existing methods address isolated distribution shifts, they overlook the critical co-evolution of label spaces and distributions under limited supervision and persistent uncertainty. To address this, we formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts, and propose a novel framework called Calibrated Source-Free Adaptation (CSFA). First, CSFA introduces a training-free prototype calibration mechanism that dynamically fuses emerging prototypes with base representations, enabling stable new-class identification without optimization overhead. Second, we design a novel source-free adaptation algorithm, i.e., Reliable Surrogate Gap Sharpness-aware (RSGS) minimization. It integrates sharpness-aware perturbation loss optimization with surrogate gap minimization, while employing entropy-based uncertainty filtering to discard unreliable samples. This mechanism ensures robust distribution alignment and mitigates generalization degradation caused by uncertainties. Therefore, CSFA establishes a unified framework for stable adaptation to evolving semantics and distributions in open-world streaming scenarios. Extensive experiments validate the superior performance and effectiveness of CSFA compared to state-of-the-art approaches.

  • 3 authors
·
Jun 6

ActivationReasoning: Logical Reasoning in Latent Activation Spaces

Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.

  • 9 authors
·
Oct 20

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Concept Bottleneck Models (CBM) are inherently interpretable models that factor model decisions into human-readable concepts. They allow people to easily understand why a model is failing, a critical feature for high-stakes applications. CBMs require manually specified concepts and often under-perform their black box counterparts, preventing their broad adoption. We address these shortcomings and are first to show how to construct high-performance CBMs without manual specification of similar accuracy to black box models. Our approach, Language Guided Bottlenecks (LaBo), leverages a language model, GPT-3, to define a large space of possible bottlenecks. Given a problem domain, LaBo uses GPT-3 to produce factual sentences about categories to form candidate concepts. LaBo efficiently searches possible bottlenecks through a novel submodular utility that promotes the selection of discriminative and diverse information. Ultimately, GPT-3's sentential concepts can be aligned to images using CLIP, to form a bottleneck layer. Experiments demonstrate that LaBo is a highly effective prior for concepts important to visual recognition. In the evaluation with 11 diverse datasets, LaBo bottlenecks excel at few-shot classification: they are 11.7% more accurate than black box linear probes at 1 shot and comparable with more data. Overall, LaBo demonstrates that inherently interpretable models can be widely applied at similar, or better, performance than black box approaches.

  • 6 authors
·
Nov 20, 2022

Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach

We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings) - term vector space models as a result, inspired by the recent ontology-related approach (using different types of contextual knowledge such as syntactic knowledge, terminological knowledge, semantic knowledge, etc.) to the identification of terms (term extraction) and relations between them (relation extraction) called semantic pre-processing technology - SPT. Our method relies on automatic term extraction from the natural language texts and subsequent formation of the problem-oriented or application-oriented (also deeply annotated) text corpora where the fundamental entity is the term (includes non-compositional and compositional terms). This gives us an opportunity to changeover from distributed word representations (or word embeddings) to distributed term representations (or term embeddings). This transition will allow to generate more accurate semantic maps of different subject domains (also, of relations between input terms - it is useful to explore clusters and oppositions, or to test your hypotheses about them). The semantic map can be represented as a graph using Vec2graph - a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs. The Vec2graph library coupled with term embeddings will not only improve accuracy in solving standard NLP tasks, but also update the conventional concept of automated ontology development. The main practical result of our work is the development kit (set of toolkits represented as web service APIs and web application), which provides all necessary routines for the basic linguistic pre-processing and the semantic pre-processing of the natural language texts in Ukrainian for future training of term vector space models.

  • 4 authors
·
Mar 6, 2020

Supervised Chain of Thought

Large Language Models (LLMs) have revolutionized natural language processing and hold immense potential for advancing Artificial Intelligence. However, the core architecture of most mainstream LLMs -- the Transformer -- has inherent limitations in computational depth, rendering them theoretically incapable of solving many reasoning tasks that demand increasingly deep computations. Chain of Thought (CoT) prompting has emerged as a technique to address these architectural limitations, as evidenced by several theoretical studies. It offers a promising approach to solving complex reasoning tasks that were previously beyond the capabilities of these models. Despite its successes, CoT and its variants (such as Tree of Thought, Graph of Thought, etc.) rely on a "one-prompt-for-all" approach, using a single prompt structure (e.g., "think step by step") for a wide range of tasks -- from counting and sorting to solving mathematical and algorithmic problems. This approach poses significant challenges for models to generate the correct reasoning steps, as the model must navigate through a vast prompt template space to find the appropriate template for each task. In this work, we build upon previous theoretical analyses of CoT to demonstrate how the one-prompt-for-all approach can negatively affect the computability of LLMs. We partition the solution search space into two: the prompt space and the answer space. Our findings show that task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance. Through experiments with state-of-the-art LLMs, we reveal a gap in reasoning performance when supervision is applied versus when it is not.

  • 2 authors
·
Oct 18, 2024

Training Large Language Models to Reason in a Continuous Latent Space

Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.

  • 7 authors
·
Dec 9, 2024 7

Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning

In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the distributional semantics but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes grounded semantics for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the language stream of this model is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.

  • 4 authors
·
Nov 13, 2021

Spacer: Towards Engineered Scientific Inspiration

Recent advances in LLMs have made automated scientific research the next frontline in the path to artificial superintelligence. However, these systems are bound either to tasks of narrow scope or the limited creative capabilities of LLMs. We propose Spacer, a scientific discovery system that develops creative and factually grounded concepts without external intervention. Spacer attempts to achieve this via 'deliberate decontextualization,' an approach that disassembles information into atomic units - keywords - and draws creativity from unexplored connections between them. Spacer consists of (i) Nuri, an inspiration engine that builds keyword sets, and (ii) the Manifesting Pipeline that refines these sets into elaborate scientific statements. Nuri extracts novel, high-potential keyword sets from a keyword graph built with 180,000 academic publications in biological fields. The Manifesting Pipeline finds links between keywords, analyzes their logical structure, validates their plausibility, and ultimately drafts original scientific concepts. According to our experiments, the evaluation metric of Nuri accurately classifies high-impact publications with an AUROC score of 0.737. Our Manifesting Pipeline also successfully reconstructs core concepts from the latest top-journal articles solely from their keyword sets. An LLM-based scoring system estimates that this reconstruction was sound for over 85% of the cases. Finally, our embedding space analysis shows that outputs from Spacer are significantly more similar to leading publications compared with those from SOTA LLMs.

  • 16 authors
·
Aug 25 2

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

  • 1 authors
·
Sep 25, 2017

Erasing Concepts from Text-to-Image Diffusion Models with Few-shot Unlearning

Generating images from text has become easier because of the scaling of diffusion models and advancements in the field of vision and language. These models are trained using vast amounts of data from the Internet. Hence, they often contain undesirable content such as copyrighted material. As it is challenging to remove such data and retrain the models, methods for erasing specific concepts from pre-trained models have been investigated. We propose a novel concept-erasure method that updates the text encoder using few-shot unlearning in which a few real images are used. The discussion regarding the generated images after erasing a concept has been lacking. While there are methods for specifying the transition destination for concepts, the validity of the specified concepts is unclear. Our method implicitly achieves this by transitioning to the latent concepts inherent in the model or the images. Our method can erase a concept within 10 s, making concept erasure more accessible than ever before. Implicitly transitioning to related concepts leads to more natural concept erasure. We applied the proposed method to various concepts and confirmed that concept erasure can be achieved tens to hundreds of times faster than with current methods. By varying the parameters to be updated, we obtained results suggesting that, like previous research, knowledge is primarily accumulated in the feed-forward networks of the text encoder. Our code is available at https://github.com/fmp453/few-shot-erasing

  • 2 authors
·
May 12, 2024

RealEra: Semantic-level Concept Erasure via Neighbor-Concept Mining

The remarkable development of text-to-image generation models has raised notable security concerns, such as the infringement of portrait rights and the generation of inappropriate content. Concept erasure has been proposed to remove the model's knowledge about protected and inappropriate concepts. Although many methods have tried to balance the efficacy (erasing target concepts) and specificity (retaining irrelevant concepts), they can still generate abundant erasure concepts under the steering of semantically related inputs. In this work, we propose RealEra to address this "concept residue" issue. Specifically, we first introduce the mechanism of neighbor-concept mining, digging out the associated concepts by adding random perturbation into the embedding of erasure concept, thus expanding the erasing range and eliminating the generations even through associated concept inputs. Furthermore, to mitigate the negative impact on the generation of irrelevant concepts caused by the expansion of erasure scope, RealEra preserves the specificity through the beyond-concept regularization. This makes irrelevant concepts maintain their corresponding spatial position, thereby preserving their normal generation performance. We also employ the closed-form solution to optimize weights of U-Net for the cross-attention alignment, as well as the prediction noise alignment with the LoRA module. Extensive experiments on multiple benchmarks demonstrate that RealEra outperforms previous concept erasing methods in terms of superior erasing efficacy, specificity, and generality. More details are available on our project page https://realerasing.github.io/RealEra/ .

  • 8 authors
·
Oct 11, 2024

Geometry-Aware Adaptation for Pretrained Models

Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.

  • 7 authors
·
Jul 23, 2023

SESA: Supervised Explicit Semantic Analysis

In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.

  • 2 authors
·
Aug 10, 2017

Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery

Identifying and predicting the factors that contribute to the success of interdisciplinary research is crucial for advancing scientific discovery. However, there is a lack of methods to quantify the integration of new ideas and technological advancements in astronomical research and how these new technologies drive further scientific breakthroughs. Large language models, with their ability to extract key concepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we extracted concepts in astronomical research from 297,807 publications between 1993 and 2024 using large language models, resulting in a set of 24,939 concepts. These concepts were then used to form a knowledge graph, where the link strength between any two concepts was determined by their relevance through the citation-reference relationships. By calculating this relevance across different time periods, we quantified the impact of numerical simulations and machine learning on astronomical research. The knowledge graph demonstrates two phases of development: a phase where the technology was integrated and another where the technology was explored in scientific discovery. The knowledge graph reveals that despite machine learning has made much inroad in astronomy, there is currently a lack of new concept development at the intersection of AI and Astronomy, which may be the current bottleneck preventing machine learning from further transforming the field of astronomy.

  • 6 authors
·
Jun 3, 2024

TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering

Point-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [R\"uckert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud. In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions. Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage.

  • 4 authors
·
Jan 11, 2024

Generating Compositional Scenes via Text-to-image RGBA Instance Generation

Text-to-image diffusion generative models can generate high quality images at the cost of tedious prompt engineering. Controllability can be improved by introducing layout conditioning, however existing methods lack layout editing ability and fine-grained control over object attributes. The concept of multi-layer generation holds great potential to address these limitations, however generating image instances concurrently to scene composition limits control over fine-grained object attributes, relative positioning in 3D space and scene manipulation abilities. In this work, we propose a novel multi-stage generation paradigm that is designed for fine-grained control, flexibility and interactivity. To ensure control over instance attributes, we devise a novel training paradigm to adapt a diffusion model to generate isolated scene components as RGBA images with transparency information. To build complex images, we employ these pre-generated instances and introduce a multi-layer composite generation process that smoothly assembles components in realistic scenes. Our experiments show that our RGBA diffusion model is capable of generating diverse and high quality instances with precise control over object attributes. Through multi-layer composition, we demonstrate that our approach allows to build and manipulate images from highly complex prompts with fine-grained control over object appearance and location, granting a higher degree of control than competing methods.

  • 5 authors
·
Nov 16, 2024 2