new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data

This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.

  • 6 authors
·
May 4, 2023

A Generalization of Transformer Networks to Graphs

We propose a generalization of transformer neural network architecture for arbitrary graphs. The original transformer was designed for Natural Language Processing (NLP), which operates on fully connected graphs representing all connections between the words in a sequence. Such architecture does not leverage the graph connectivity inductive bias, and can perform poorly when the graph topology is important and has not been encoded into the node features. We introduce a graph transformer with four new properties compared to the standard model. First, the attention mechanism is a function of the neighborhood connectivity for each node in the graph. Second, the positional encoding is represented by the Laplacian eigenvectors, which naturally generalize the sinusoidal positional encodings often used in NLP. Third, the layer normalization is replaced by a batch normalization layer, which provides faster training and better generalization performance. Finally, the architecture is extended to edge feature representation, which can be critical to tasks s.a. chemistry (bond type) or link prediction (entity relationship in knowledge graphs). Numerical experiments on a graph benchmark demonstrate the performance of the proposed graph transformer architecture. This work closes the gap between the original transformer, which was designed for the limited case of line graphs, and graph neural networks, that can work with arbitrary graphs. As our architecture is simple and generic, we believe it can be used as a black box for future applications that wish to consider transformer and graphs.

  • 2 authors
·
Dec 17, 2020

Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness

In this work, we propose a framework to learn feedback control policies with guarantees on closed-loop generalization and adversarial robustness. These policies are learned directly from expert demonstrations, contained in a dataset of state-control input pairs, without any prior knowledge of the task and system model. We use a Lipschitz-constrained loss minimization scheme to learn feedback policies with certified closed-loop robustness, wherein the Lipschitz constraint serves as a mechanism to tune the generalization performance and robustness to adversarial disturbances. Our analysis exploits the Lipschitz property to obtain closed-loop guarantees on generalization and robustness of the learned policies. In particular, we derive a finite sample bound on the policy learning error and establish robust closed-loop stability under the learned control policy. We also derive bounds on the closed-loop regret with respect to the expert policy and the deterioration of closed-loop performance under bounded (adversarial) disturbances to the state measurements. Numerical results validate our analysis and demonstrate the effectiveness of our robust feedback policy learning framework. Finally, our results suggest the existence of a potential tradeoff between nominal closed-loop performance and adversarial robustness, and that improvements in nominal closed-loop performance can only be made at the expense of robustness to adversarial perturbations.

  • 3 authors
·
Mar 30, 2021

Grokking at the Edge of Numerical Stability

Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and perpGrad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.

  • 4 authors
·
Jan 8

Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning

Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.

  • 5 authors
·
Jun 5

Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization

While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still blank. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning various domains, such as mathematics and programming problems, chess puzzles, and reasoning questions. Each problem within these datasets is annotated with numerical difficulty scores. To systematically estimate problem difficulties, we collect abundant performance data on attempts to each problem by humans in the real world or LLMs on the prominent leaderboard. Leveraging the rich performance data, we apply well-established difficulty ranking systems, such as Item Response Theory (IRT) and Glicko-2 models, to uniformly assign numerical difficulty scores to problems. Moreover, datasets in Easy2Hard-Bench distinguish themselves from previous collections by a higher proportion of challenging problems. Through extensive experiments with six state-of-the-art LLMs, we provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty, with the aim of inspiring future research in LLM generalization. The datasets are available at https://huggingface.co/datasets/furonghuang-lab/Easy2Hard-Bench.

  • 11 authors
·
Sep 26, 2024

Leveraging Training Data in Few-Shot Prompting for Numerical Reasoning

Chain-of-thought (CoT) prompting with large language models has proven effective in numerous natural language processing tasks, but designing prompts that generalize well to diverse problem types can be challenging, especially in the context of math word problem (MWP) solving. Additionally, it is common to have a large amount of training data that have a better diversity coverage but CoT annotations are not available, which limits the use of supervised learning techniques. To address these issues, we investigate two approaches to leverage the training data in a few-shot prompting scenario: dynamic program prompting and program distillation. Our approach is largely inspired by Gao et al., (2022), where they proposed to replace the CoT with the programs as the intermediate reasoning step. Such a prompting strategy allows us to accurately verify the answer correctness through program execution in MWP solving. Our dynamic program prompting involves annotating the training data by sampling correct programs from a large language model, while program distillation involves adapting a smaller model to the program-annotated training data. Our experiments on three standard MWP datasets demonstrate the effectiveness of these approaches, yielding significant improvements over previous baselines for prompting and fine-tuning. Our results suggest that leveraging a large amount of training data can improve the generalization ability of prompts and boost the performance of fine-tuned small models in MWP solving.

  • 2 authors
·
May 29, 2023

Pseudo Numerical Methods for Diffusion Models on Manifolds

Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules. Our implementation is available at https://github.com/luping-liu/PNDM.

  • 4 authors
·
Feb 20, 2022 1

OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization

Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.

  • 7 authors
·
Jun 23

DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling

Solving parametric partial differential equations (PDEs) and associated PDE-based, inverse problems is a central task in engineering and physics, yet existing neural operator methods struggle with high-dimensional, discontinuous inputs and require large amounts of {\em labeled} training data. We propose the Deep Generative Neural Operator (DGNO), a physics-aware framework that addresses these challenges by leveraging a deep, generative, probabilistic model in combination with a set of lower-dimensional, latent variables that simultaneously encode PDE-inputs and PDE-outputs. This formulation can make use of unlabeled data and significantly improves inverse problem-solving, particularly for discontinuous or discrete-valued input functions. DGNO enforces physics constraints without labeled data by incorporating as virtual observables, weak-form residuals based on compactly supported radial basis functions (CSRBFs). These relax regularity constraints and eliminate higher-order derivatives from the objective function. We also introduce MultiONet, a novel neural operator architecture, which is a more expressive generalization of the popular DeepONet that significantly enhances the approximating power of the proposed model. These innovations make DGNO particularly effective for challenging forward and inverse, PDE-based problems, such as those involving multi-phase media. Numerical experiments demonstrate that DGNO achieves higher accuracy across multiple benchmarks while exhibiting robustness to noise and strong generalization to out-of-distribution cases. Its adaptability, and the ability to handle sparse, noisy data while providing probabilistic estimates, make DGNO a powerful tool for scientific and engineering applications.

  • 2 authors
·
Feb 10

ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark

Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.

  • 3 authors
·
May 28

GALAX: Graph-Augmented Language Model for Explainable Reinforcement-Guided Subgraph Reasoning in Precision Medicine

In precision medicine, quantitative multi-omic features, topological context, and textual biological knowledge play vital roles in identifying disease-critical signaling pathways and targets. Existing pipelines capture only part of these-numerical omics ignore topological context, text-centric LLMs lack quantitative grounded reasoning, and graph-only models underuse node semantics and the generalization of LLMs-limiting mechanistic interpretability. Although Process Reward Models (PRMs) aim to guide reasoning in LLMs, they remain limited by unreliable intermediate evaluation, and vulnerability to reward hacking with computational cost. These gaps motivate integrating quantitative multi-omic signals, topological structure with node annotations, and literature-scale text via LLMs, using subgraph reasoning as the principle bridge linking numeric evidence, topological knowledge and language context. Therefore, we propose GALAX (Graph Augmented LAnguage model with eXplainability), an innovative framework that integrates pretrained Graph Neural Networks (GNNs) into Large Language Models (LLMs) via reinforcement guided by a Graph Process Reward Model (GPRM), which generates disease-relevant subgraphs in a step-wise manner initiated by an LLM and iteratively evaluated by a pretrained GNN, enabling process-level supervision without explicit intermediate reasoning annotations. As an application, we also introduced Target-QA, a benchmark combining CRISPR-identified targets, multi-omic profiles, and biomedical graph knowledge across diverse cancer cell lines, which enables GNN pretraining for supervising step-wise graph construction and supports long-context reasoning over text-numeric graphs (TNGs), providing a scalable and biologically grounded framework for explainable, reinforcement-guided subgraph reasoning toward reliable and interpretable target and pathway discovery in precision medicine.

  • 7 authors
·
Sep 25

What Algorithms can Transformers Learn? A Study in Length Generalization

Large language models exhibit surprising emergent generalization properties, yet also struggle on many simple reasoning tasks such as arithmetic and parity. This raises the question of if and when Transformer models can learn the true algorithm for solving a task. We study the scope of Transformers' abilities in the specific setting of length generalization on algorithmic tasks. Here, we propose a unifying framework to understand when and how Transformers can exhibit strong length generalization on a given task. Specifically, we leverage RASP (Weiss et al., 2021) -- a programming language designed for the computational model of a Transformer -- and introduce the RASP-Generalization Conjecture: Transformers tend to length generalize on a task if the task can be solved by a short RASP program which works for all input lengths. This simple conjecture remarkably captures most known instances of length generalization on algorithmic tasks. Moreover, we leverage our insights to drastically improve generalization performance on traditionally hard tasks (such as parity and addition). On the theoretical side, we give a simple example where the "min-degree-interpolator" model of learning from Abbe et al. (2023) does not correctly predict Transformers' out-of-distribution behavior, but our conjecture does. Overall, our work provides a novel perspective on the mechanisms of compositional generalization and the algorithmic capabilities of Transformers.

  • 8 authors
·
Oct 24, 2023

Symbolic Synthesis of Neural Networks

Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .

  • 1 authors
·
Mar 6, 2023

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

  • 6 authors
·
May 22, 2022

Neural-Symbolic Recursive Machine for Systematic Generalization

Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.

  • 6 authors
·
Oct 4, 2022

SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training

In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.

  • 4 authors
·
Oct 3, 2023

Towards Exact Computation of Inductive Bias

Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.

  • 5 authors
·
Jun 22, 2024

Improving Length-Generalization in Transformers via Task Hinting

It has been observed in recent years that transformers have problems with length generalization for certain types of reasoning and arithmetic tasks. In particular, the performance of a transformer model trained on tasks (say addition) up to a certain length (e.g., 5 digit numbers) drops sharply when applied to longer instances of the same problem. This work proposes an approach based on task hinting towards addressing length generalization. Our key idea is that while training the model on task-specific data, it is helpful to simultaneously train the model to solve a simpler but related auxiliary task as well. We study the classical sorting problem as a canonical example to evaluate our approach. We design a multitask training framework and show that task hinting significantly improve length generalization. For sorting we show that it is possible to train models on data consisting of sequences having length at most 20, and improve the test accuracy on sequences of length 100 from less than 1% (for standard training) to more than 92% (via task hinting). Our study uncovers several interesting aspects of length generalization. We observe that while several auxiliary tasks may seem natural a priori, their effectiveness in improving length generalization differs dramatically. We further use probing and visualization-based techniques to understand the internal mechanisms via which the model performs the task, and propose a theoretical construction consistent with the observed learning behaviors of the model. Based on our construction, we show that introducing a small number of length dependent parameters into the training procedure can further boost the performance on unseen lengths. Finally, we also show the efficacy of our task hinting based approach beyond sorting, giving hope that these techniques will be applicable in broader contexts.

  • 2 authors
·
Oct 1, 2023

Beyond Finite Data: Towards Data-free Out-of-distribution Generalization via Extrapolation

Out-of-distribution (OOD) generalization is a favorable yet challenging property for deep neural networks. The core challenges lie in the limited availability of source domains that help models learn an invariant representation from the spurious features. Various domain augmentation have been proposed but largely rely on interpolating existing domains and frequently face difficulties in creating truly "novel" domains. Humans, on the other hand, can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization? We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains. Starting with the class of interest, we query the LLMs to extract relevant knowledge for these novel domains. We then bridge the gap between the text-centric knowledge derived from LLMs and the pixel input space of the model using text-to-image generation techniques. By augmenting the training set of domain generalization datasets with high-fidelity, photo-realistic images of these new domains, we achieve significant improvements over all existing methods, as demonstrated in both single and multi-domain generalization across various benchmarks. With the ability to extrapolate any domains for any class, our method has the potential to learn a generalized model for any task without any data. To illustrate, we put forth a much more difficult setting termed, data-free domain generalization, that aims to learn a generalized model in the absence of any collected data. Our empirical findings support the above argument and our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2\% on datasets such as VLCS.

  • 7 authors
·
Mar 8, 2024

Teaching Arithmetic to Small Transformers

Large language models like GPT-4 exhibit emergent capabilities across general-purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next-token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, we discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities.

  • 5 authors
·
Jul 7, 2023

Sequential Training of Neural Networks with Gradient Boosting

This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.

  • 2 authors
·
Sep 26, 2019

Cross-Task Generalization via Natural Language Crowdsourcing Instructions

Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound indicating significant room for more progress in this direction.

  • 4 authors
·
Apr 18, 2021

Model-agnostic Measure of Generalization Difficulty

The measure of a machine learning algorithm is the difficulty of the tasks it can perform, and sufficiently difficult tasks are critical drivers of strong machine learning models. However, quantifying the generalization difficulty of machine learning benchmarks has remained challenging. We propose what is to our knowledge the first model-agnostic measure of the inherent generalization difficulty of tasks. Our inductive bias complexity measure quantifies the total information required to generalize well on a task minus the information provided by the data. It does so by measuring the fractional volume occupied by hypotheses that generalize on a task given that they fit the training data. It scales exponentially with the intrinsic dimensionality of the space over which the model must generalize but only polynomially in resolution per dimension, showing that tasks which require generalizing over many dimensions are drastically more difficult than tasks involving more detail in fewer dimensions. Our measure can be applied to compute and compare supervised learning, reinforcement learning and meta-learning generalization difficulties against each other. We show that applied empirically, it formally quantifies intuitively expected trends, e.g. that in terms of required inductive bias, MNIST < CIFAR10 < Imagenet and fully observable Markov decision processes (MDPs) < partially observable MDPs. Further, we show that classification of complex images < few-shot meta-learning with simple images. Our measure provides a quantitative metric to guide the construction of more complex tasks requiring greater inductive bias, and thereby encourages the development of more sophisticated architectures and learning algorithms with more powerful generalization capabilities.

  • 6 authors
·
May 1, 2023

Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs

Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.

  • 2 authors
·
Feb 22, 2024 1

Where to find Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test

Grokking, i.e., test performance keeps improving long after training loss converged, has been recently witnessed in neural network training, making the mechanism of generalization and other emerging capabilities such as reasoning mysterious. While prior studies usually train small models on a few toy or highly-specific tasks for thousands of epochs, we conduct the first study of grokking on checkpoints during one-pass pretraining of a 7B large language model (LLM), i.e., OLMoE. We compute the training loss and evaluate generalization on diverse benchmark tasks, including math reasoning, code generation, and commonsense/domain-specific knowledge retrieval tasks. Our study, for the first time, verifies that grokking still happens in the pretraining of large-scale foundation models, though different data may enter grokking stages asynchronously. We further demystify grokking's "emergence of generalization" by investigating LLM internal dynamics. Specifically, we find that training samples' pathways (i.e., expert choices across layers) evolve from random, instance-specific to more structured and shareable between samples during grokking. Also, the complexity of a sample's pathway reduces despite the converged loss. These indicate a memorization-to-generalization conversion, providing a mechanistic explanation of delayed generalization. In the study, we develop two novel metrics to quantify pathway distance and the complexity of a single pathway. We show their ability to predict the generalization improvement on diverse downstream tasks. They are efficient, simple to compute and solely dependent on training data. Hence, they have practical value for pretraining, enabling us to monitor the generalization performance without finetuning and test. Theoretically, we show that more structured pathways reduce model complexity and improve the generalization bound.

  • 3 authors
·
Jun 26 2

High-dimensional dynamics of generalization error in neural networks

We perform an average case analysis of the generalization dynamics of large neural networks trained using gradient descent. We study the practically-relevant "high-dimensional" regime where the number of free parameters in the network is on the order of or even larger than the number of examples in the dataset. Using random matrix theory and exact solutions in linear models, we derive the generalization error and training error dynamics of learning and analyze how they depend on the dimensionality of data and signal to noise ratio of the learning problem. We find that the dynamics of gradient descent learning naturally protect against overtraining and overfitting in large networks. Overtraining is worst at intermediate network sizes, when the effective number of free parameters equals the number of samples, and thus can be reduced by making a network smaller or larger. Additionally, in the high-dimensional regime, low generalization error requires starting with small initial weights. We then turn to non-linear neural networks, and show that making networks very large does not harm their generalization performance. On the contrary, it can in fact reduce overtraining, even without early stopping or regularization of any sort. We identify two novel phenomena underlying this behavior in overcomplete models: first, there is a frozen subspace of the weights in which no learning occurs under gradient descent; and second, the statistical properties of the high-dimensional regime yield better-conditioned input correlations which protect against overtraining. We demonstrate that naive application of worst-case theories such as Rademacher complexity are inaccurate in predicting the generalization performance of deep neural networks, and derive an alternative bound which incorporates the frozen subspace and conditioning effects and qualitatively matches the behavior observed in simulation.

  • 2 authors
·
Oct 10, 2017

A Survey of Quantization Methods for Efficient Neural Network Inference

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

  • 6 authors
·
Mar 25, 2021

The Imitation Game: Turing Machine Imitator is Length Generalizable Reasoner

Length generalization, the ability to solve problems of longer sequences than those observed during training, poses a core challenge of Transformer-based large language models (LLM). Although existing studies have predominantly focused on data-driven approaches for arithmetic operations and symbolic manipulation tasks, these approaches tend to be task-specific with limited overall performance. To pursue a more general solution, this paper focuses on a broader case of reasoning problems that are computable, i.e., problems that algorithms can solve, thus can be solved by the Turing Machine. From this perspective, this paper proposes Turing MAchine Imitation Learning (TAIL) to improve the length generalization ability of LLMs. TAIL synthesizes chain-of-thoughts (CoT) data that imitate the execution process of a Turing Machine by computer programs, which linearly expands the reasoning steps into atomic states to alleviate shortcut learning and explicit memory fetch mechanism to reduce the difficulties of dynamic and long-range data access in elementary operations. To validate the reliability and universality of TAIL, we construct a challenging synthetic dataset covering 8 classes of algorithms and 18 tasks. Without bells and whistles, TAIL significantly improves the length generalization ability as well as the performance of Qwen2.5-7B on various tasks using only synthetic data, surpassing previous methods and DeepSeek-R1. The experimental results reveal that the key concepts in the Turing Machine, instead of the thinking styles, are indispensable for TAIL for length generalization, through which the model exhibits read-and-write behaviors consistent with the properties of the Turing Machine in their attention layers. This work provides a promising direction for future research in the learning of LLM reasoning from synthetic data.

  • 7 authors
·
Jul 17 3

Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions

Pretrained language models have shown superior performance on many natural language processing tasks, yet they still struggle at multi-step formal reasoning tasks like grade school math problems. One key challenge of finetuning them to solve such math reasoning problems is that many existing datasets only contain one reference solution for each problem, despite the fact that there are often alternative solutions resembling different reasoning paths to the final answer. This way, the finetuned models are biased towards the limited reference solutions, which limits their generalization to unseen examples. To mitigate this issue, we propose to let the model perform sampling during training and learn from both self-sampled fully-correct solutions, which yield the correct answer upon execution, and partially-correct solutions, whose intermediate state matches an intermediate state of a known correct solution. We show that our use of self-sampled correct and partially-correct solutions can benefit learning and help guide the sampling process, leading to more efficient exploration of the solution space. Additionally, we explore various training objectives to support learning from multiple solutions per example and find they greatly affect the performance. Experiments on two math reasoning datasets show the effectiveness of our method compared to learning from a single reference solution with MLE, where we improve PASS@100 from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA. Such improvements are also consistent across different model sizes. Our code is available at https://github.com/microsoft/TraceCodegen.

  • 7 authors
·
May 27, 2022

Data Factors for Better Compositional Generalization

Recent diagnostic datasets on compositional generalization, such as SCAN (Lake and Baroni, 2018) and COGS (Kim and Linzen, 2020), expose severe problems in models trained from scratch on these datasets. However, in contrast to this poor performance, state-of-the-art models trained on larger and more general datasets show better generalization ability. In this work, to reconcile this inconsistency, we conduct an empirical analysis by training Transformer models on a variety of training sets with different data factors, including dataset scale, pattern complexity, example difficulty, etc. First, we show that increased dataset complexity can lead to better generalization behavior on multiple different generalization challenges. To further understand this improvement, we show two axes of the benefit from more complex datasets: they provide more diverse examples so compositional understanding becomes more effective, and they also prevent ungeneralizable memorization of the examples due to reduced example repetition frequency. Finally, we explore how training examples of different difficulty levels influence generalization differently. On synthetic datasets, simple examples invoke stronger compositionality than hard examples do. On larger-scale real language datasets, while hard examples become more important potentially to ensure decent data coverage, a balanced mixture of simple and hard examples manages to induce the strongest generalizability. The code and data for this work are available at https://github.com/owenzx/data4comp

  • 3 authors
·
Nov 7, 2023

DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators

While it is widely known that neural networks are universal approximators of continuous functions, a less known and perhaps more powerful result is that a neural network with a single hidden layer can approximate accurately any nonlinear continuous operator. This universal approximation theorem is suggestive of the potential application of neural networks in learning nonlinear operators from data. However, the theorem guarantees only a small approximation error for a sufficient large network, and does not consider the important optimization and generalization errors. To realize this theorem in practice, we propose deep operator networks (DeepONets) to learn operators accurately and efficiently from a relatively small dataset. A DeepONet consists of two sub-networks, one for encoding the input function at a fixed number of sensors x_i, i=1,dots,m (branch net), and another for encoding the locations for the output functions (trunk net). We perform systematic simulations for identifying two types of operators, i.e., dynamic systems and partial differential equations, and demonstrate that DeepONet significantly reduces the generalization error compared to the fully-connected networks. We also derive theoretically the dependence of the approximation error in terms of the number of sensors (where the input function is defined) as well as the input function type, and we verify the theorem with computational results. More importantly, we observe high-order error convergence in our computational tests, namely polynomial rates (from half order to fourth order) and even exponential convergence with respect to the training dataset size.

  • 3 authors
·
Oct 7, 2019

sharpDARTS: Faster and More Accurate Differentiable Architecture Search

Neural Architecture Search (NAS) has been a source of dramatic improvements in neural network design, with recent results meeting or exceeding the performance of hand-tuned architectures. However, our understanding of how to represent the search space for neural net architectures and how to search that space efficiently are both still in their infancy. We have performed an in-depth analysis to identify limitations in a widely used search space and a recent architecture search method, Differentiable Architecture Search (DARTS). These findings led us to introduce novel network blocks with a more general, balanced, and consistent design; a better-optimized Cosine Power Annealing learning rate schedule; and other improvements. Our resulting sharpDARTS search is 50% faster with a 20-30% relative improvement in final model error on CIFAR-10 when compared to DARTS. Our best single model run has 1.93% (1.98+/-0.07) validation error on CIFAR-10 and 5.5% error (5.8+/-0.3) on the recently released CIFAR-10.1 test set. To our knowledge, both are state of the art for models of similar size. This model also generalizes competitively to ImageNet at 25.1% top-1 (7.8% top-5) error. We found improvements for existing search spaces but does DARTS generalize to new domains? We propose Differentiable Hyperparameter Grid Search and the HyperCuboid search space, which are representations designed to leverage DARTS for more general parameter optimization. Here we find that DARTS fails to generalize when compared against a human's one shot choice of models. We look back to the DARTS and sharpDARTS search spaces to understand why, and an ablation study reveals an unusual generalization gap. We finally propose Max-W regularization to solve this problem, which proves significantly better than the handmade design. Code will be made available.

  • 3 authors
·
Mar 23, 2019

The Impact of Positional Encoding on Length Generalization in Transformers

Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.

  • 5 authors
·
May 30, 2023

Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data

Neural networks trained by gradient descent (GD) have exhibited a number of surprising generalization behaviors. First, they can achieve a perfect fit to noisy training data and still generalize near-optimally, showing that overfitting can sometimes be benign. Second, they can undergo a period of classical, harmful overfitting -- achieving a perfect fit to training data with near-random performance on test data -- before transitioning ("grokking") to near-optimal generalization later in training. In this work, we show that both of these phenomena provably occur in two-layer ReLU networks trained by GD on XOR cluster data where a constant fraction of the training labels are flipped. In this setting, we show that after the first step of GD, the network achieves 100% training accuracy, perfectly fitting the noisy labels in the training data, but achieves near-random test accuracy. At a later training step, the network achieves near-optimal test accuracy while still fitting the random labels in the training data, exhibiting a "grokking" phenomenon. This provides the first theoretical result of benign overfitting in neural network classification when the data distribution is not linearly separable. Our proofs rely on analyzing the feature learning process under GD, which reveals that the network implements a non-generalizable linear classifier after one step and gradually learns generalizable features in later steps.

  • 5 authors
·
Oct 3, 2023

Linguistic Collapse: Neural Collapse in (Large) Language Models

Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.

  • 2 authors
·
May 27, 2024