t2i_test1 / app.py
John6666's picture
Upload 16 files
adefd5c verified
import spaces
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from t2i_config import KERNELS_PREFETCH_ON_STARTUP, KERNELS_PREFETCH_REPOS
if KERNELS_PREFETCH_ON_STARTUP:
try:
from kernels import has_kernel, get_kernel
for _repo_id in KERNELS_PREFETCH_REPOS:
if has_kernel(_repo_id):
get_kernel(_repo_id)
except Exception as _e:
print(f"INFO : Kernels prefetch skipped: {_e}")
from t2i.infer import (infer, infer_multi, infer_simple, save_image_history, save_gallery_history,
update_param_mode_gr, update_ar_gr,
MAX_SEED, MAX_IMAGE_SIZE, ASPECT_RATIOS, FILE_FORMATS, DEFAULT_TASKS, DEFAULT_DURATION,
DEFAULT_I2I_STRENGTH, DEFAULT_UPSCALE_STRENGTH, DEFAULT_UPSCALE_BY, DEFAULT_CLIP_SKIP,
models, MODEL_TYPES, SAMPLER_NAMES, PRED_TYPES, VAE_NAMES,
UPSCALE_MODES, PARAM_MODES, PIPELINE_TYPES)
css = """
#col-container {
margin: 0 auto;
max-width: 1080px;
}
"""
with gr.Blocks(fill_height=True, fill_width=True) as demo:
with gr.Tab("Image Generator"):
lora_dict = gr.State({})
with gr.Column(elem_id="col-container"):
with gr.Tab("Normal"):
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, lines=1, placeholder="Enter your prompt", container=False)
run_button = gr.Button("Run", scale=0)
run_button_simple = gr.Button("Simple", scale=0, visible=False) # for API
result = gr.Image(label="Result", show_label=False, format="png", type="filepath", interactive=False, buttons=["download", "fullscreen"])
with gr.Tab("Multi"):
with gr.Row():
prompt_multi = gr.Text(label="Prompt", show_label=False, lines=1, placeholder="Enter your prompt", container=False)
run_button_multi = gr.Button("Run", scale=0)
model_name_multi = gr.Dropdown(label="Model", choices=models, value=models[0], multiselect=True, allow_custom_value=True)
num_images = gr.Slider(label="Count", minimum=1, maximum=16, step=1, value=1)
result_multi = gr.Gallery(label="Result", columns=2, object_fit="contain", format="png", interactive=False, buttons=["download", "fullscreen"])
with gr.Accordion("Output History", open=False):
history_files = gr.Files(interactive=False, visible=False)
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, buttons=["download", "fullscreen"])
history_clear_button = gr.Button(value="Clear History", variant="secondary")
history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, api_visibility="undocumented")
with gr.Group():
negative_prompt = gr.Text(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt",
value="") # nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn
with gr.Row(equal_height=True):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(equal_height=True):
param_mode = gr.Radio(label="Parameter Settings", choices=PARAM_MODES, value=PARAM_MODES[0])
ar = gr.Dropdown(label="Aspect Ratio", choices=ASPECT_RATIOS, value=ASPECT_RATIOS[0])
with gr.Row(equal_height=True):
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7, visible=False)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=60, step=1, value=28, visible=False)
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=models, value=models[0], allow_custom_value=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height=True):
model_type = gr.Dropdown(label="Model Type", choices=MODEL_TYPES, value=MODEL_TYPES[0])
vae = gr.Dropdown(label="VAE", choices=VAE_NAMES, value=VAE_NAMES[0], allow_custom_value=True)
with gr.Row(equal_height=True):
sampler = gr.Dropdown(label="Sampler", choices=SAMPLER_NAMES, value=SAMPLER_NAMES[0])
pred_type = gr.Dropdown(label="Sampler prediction", choices=PRED_TYPES, value=PRED_TYPES[0])
with gr.Row(equal_height=True):
pipe_type = gr.Dropdown(label="Pipeline Type", choices=PIPELINE_TYPES, value=PIPELINE_TYPES[0])
clip_skip = gr.Slider(label="Clip Skip", minimum=0, maximum=12, step=1, value=DEFAULT_CLIP_SKIP)
with gr.Row(equal_height=True):
task = gr.Radio(label="Task", choices=DEFAULT_TASKS, value=DEFAULT_TASKS[0])
strength = gr.Slider(label="Image-to-Image / Inpainting Strength", minimum=0, maximum=1., step=0.01, value=DEFAULT_I2I_STRENGTH)
input_image = gr.ImageEditor(label="Input Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB', layers=False, buttons=[], canvas_size=(384, 384), width=384, height=512,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"))
with gr.Row(equal_height=True):
upscale_mode = gr.Dropdown(label="Upscaling", choices=UPSCALE_MODES, value=UPSCALE_MODES[0])
upscale_strength = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.05, value=DEFAULT_UPSCALE_STRENGTH)
upscale_by = gr.Slider(label="Upscale by", minimum=1, maximum=1.5, step=0.1, value=DEFAULT_UPSCALE_BY)
with gr.Row(equal_height=True):
format = gr.Dropdown(label="Output Format", choices=FILE_FORMATS, value=FILE_FORMATS[0])
gpu_duration = gr.Number(minimum=0, maximum=240, value=DEFAULT_DURATION, label="GPU time duration (seconds per image)")
with gr.Tab("PNG Info"):
def extract_exif_data(image):
if image is None: return ""
try:
metadata_keys = ["parameters", "metadata", "prompt", "Comment"]
for key in metadata_keys:
if key in image.info:
return image.info[key]
return str(image.info)
except Exception as e:
return f"Error extracting metadata: {str(e)}"
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, buttons=["copy"], interactive=False, container=True, max_lines=99)
image_metadata.change(fn=extract_exif_data, inputs=[image_metadata], outputs=[result_metadata], api_visibility="undocumented")
gr.on(triggers=[run_button.click, prompt.submit], fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
model_name, sampler, pred_type, vae, model_type, clip_skip, pipe_type, lora_dict, upscale_mode, upscale_strength, upscale_by,
input_image, strength, param_mode, ar, format, task, gpu_duration],
outputs=[result])
gr.on(triggers=[run_button_multi.click, prompt_multi.submit], fn=infer_multi,
inputs=[prompt_multi, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
model_name_multi, sampler, pred_type, vae, clip_skip, pipe_type, lora_dict, upscale_mode, upscale_strength, upscale_by,
input_image, strength, param_mode, ar, format, num_images, task, gpu_duration],
outputs=[result_multi])
run_button_simple.click(fn=infer_simple, inputs=[prompt, negative_prompt, seed, randomize_seed, model_name], outputs=[result])
result.change(save_image_history, [result, history_gallery, history_files], [history_gallery, history_files], queue=False, api_visibility="undocumented")
result_multi.change(save_gallery_history, [result_multi, history_gallery, history_files], [history_gallery, history_files], queue=False, api_visibility="undocumented")
ar.change(update_ar_gr, [ar], [width, height], queue=False, api_visibility="undocumented")
param_mode.change(update_param_mode_gr, [param_mode], [guidance_scale, num_inference_steps], queue=False, api_visibility="undocumented")
demo.queue().launch(ssr_mode=False, mcp_server=True, css=css)