import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms from PIL import Image torch.set_float32_matmul_precision(["high", "highest"][0]) # Load BiRefNet model birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cpu") # Preprocessing pipeline transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def process(image): """Segment person/body from image with transparent background""" image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cpu") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) # Apply mask as alpha channel (transparent background) image = image.convert("RGBA") image.putalpha(mask) return image # Transparent PNG def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() result = process(im) return result def process_file(f): """Process uploaded file and save output as PNG with transparency""" name_path = f.rsplit(".", 1)[0] + ".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path, "PNG") # Save with transparency return name_path # Gradio UI Components slider1 = gr.Image() slider2 = ImageSlider(label="birefnet", type="pil") image = gr.Image(label="Upload an image") image2 = gr.Image(label="Upload an image", type="filepath") text = gr.Textbox(label="Paste an image URL") png_file = gr.File(label="Output PNG file") # Example image chameleon = load_img("butterfly.jpg", output_type="pil") # Tab for PNG output tab3 = gr.Interface( process_file, inputs=image2, outputs=png_file, examples=["butterfly.jpg"], api_name="png", ) # Main demo demo = gr.TabbedInterface([tab3], ["PNG Output"], title="Body Extractor") if __name__ == "__main__": demo.launch(share=True)