File size: 6,774 Bytes
178417b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from dataclasses import dataclass
from typing import Callable, Generator, override

import fastrtc
import librosa
import numpy as np
from ten_vad import TenVad


@dataclass
class VADEvent:
    interrupt_signal: bool | None = None
    full_audio: tuple[int, np.ndarray] | None = None


class RealtimeVAD:
    def __init__(
        self,
        src_sr: int = 24000,
        hop_size: int = 256,
        start_threshold: float = 0.8,
        end_threshold: float = 0.7,
        pad_start_s: float = 0.6,
        min_positive_s: float = 0.4,
        min_silence_s: float = 1.2,
    ):
        self.src_sr = src_sr
        self.vad_sr = 16000
        self.hop_size = hop_size
        self.start_threshold = start_threshold
        self.end_threshold = end_threshold
        self.pad_start_s = pad_start_s
        self.min_positive_s = min_positive_s
        self.min_silence_s = min_silence_s

        self.vad_model = TenVad(hop_size=hop_size)

        self.vad_buffer = np.array([], dtype=np.int16)
        """
        VAD Buffer to store audio data for VAD processing
        Stores 16kHz int16 PCM. Process and cut for each `hop_size` samples.
        """
        self.src_buffer = np.array([], dtype=np.int16)
        """
        Source Buffer to store original audio data
        Stores original sampling rate (24kHz) int16 PCM.
        Cut when pause detected (after `min_silence_s`).
        Sliding window `pad_start_s` when inactive.
        """

        self.vad_buffer_offset = 0
        self.src_buffer_offset = 0

        self.active = False
        self.interrupt_signal = False
        self.sum_positive_s = 0.0
        self.silence_start_s: float | None = None

    def process(self, audio_data: np.ndarray):
        if audio_data.ndim == 2:
            # FastRTC style [channels, samples]
            audio_data = audio_data[0]

        # Append to buffers
        self.src_buffer = np.concatenate((self.src_buffer, audio_data))

        vad_audio_data = librosa.resample(
            audio_data.astype(np.float32) / 32768.0,
            orig_sr=self.src_sr,
            target_sr=self.vad_sr,
        )
        vad_audio_data = (vad_audio_data * 32767.0).round().astype(np.int16)
        self.vad_buffer = np.concatenate((self.vad_buffer, vad_audio_data))
        vad_buffer_size = self.vad_buffer.shape[0]

        def process_chunk(chunk_offset_s: float, vad_chunk: np.ndarray):
            speech_prob, _ = self.vad_model.process(vad_chunk)

            hop_s = self.hop_size / self.vad_sr

            if not self.active:
                if speech_prob >= self.start_threshold:
                    self.active = True
                    self.sum_positive_s = hop_s
                    print(f"[VAD] Active at {chunk_offset_s:.2f}s, {speech_prob=:.3f}")
                else:
                    new_src_offset = int(
                        (chunk_offset_s - self.pad_start_s) * self.src_sr
                    )
                    cut_pos = new_src_offset - self.src_buffer_offset
                    if cut_pos > 0:
                        self.src_buffer = self.src_buffer[cut_pos:]
                        self.src_buffer_offset = new_src_offset
                return

            chunk_src_pos = int(chunk_offset_s * self.src_sr)

            if speech_prob >= self.end_threshold:
                self.silence_start_s = None
                self.sum_positive_s += hop_s
                if (
                    not self.interrupt_signal
                    and self.sum_positive_s >= self.min_positive_s
                ):
                    self.interrupt_signal = True
                    yield VADEvent(interrupt_signal=True)
                    print(
                        f"[VAD] Interrupt signal at {chunk_offset_s:.2f}s, {speech_prob=:.3f}"
                    )
            elif self.silence_start_s is None:
                self.silence_start_s = chunk_offset_s

            if (
                self.silence_start_s is not None
                and chunk_offset_s - self.silence_start_s >= self.min_silence_s
            ):
                # Inactive now
                cut_pos = chunk_src_pos - self.src_buffer_offset
                if self.interrupt_signal:
                    webrtc_audio = self.src_buffer[np.newaxis, :cut_pos]
                    yield VADEvent(full_audio=(self.src_sr, webrtc_audio))
                    print(
                        f"[VAD] Full audio at {chunk_offset_s:.2f}s, {webrtc_audio.shape=}"
                    )
                self.src_buffer = self.src_buffer[cut_pos:]
                self.src_buffer_offset = chunk_src_pos

                self.active = False
                self.interrupt_signal = False
                self.sum_positive_s = 0.0
                self.silence_start_s = None

        for chunk_pos in range(0, vad_buffer_size - self.hop_size, self.hop_size):
            processed_samples = chunk_pos + self.hop_size
            chunk_offset_s = (self.vad_buffer_offset + chunk_pos) / self.vad_sr
            vad_chunk = self.vad_buffer[chunk_pos : chunk_pos + self.hop_size]
            yield from process_chunk(chunk_offset_s, vad_chunk)

        self.vad_buffer = self.vad_buffer[processed_samples:]
        self.vad_buffer_offset += processed_samples


type StreamerGenerator = Generator[fastrtc.tracks.EmitType, None, None]
type StreamerFn = Callable[[tuple[int, np.ndarray], str], StreamerGenerator]


class VADStreamHandler(fastrtc.StreamHandler):
    def __init__(
        self,
        streamer_fn: StreamerFn,
        input_sample_rate: int = 24000,
    ):
        super().__init__(
            "mono",
            24000,
            None,
            input_sample_rate,
            30,
        )
        self.streamer_fn = streamer_fn
        self.realtime_vad = RealtimeVAD(src_sr=input_sample_rate)
        self.generator: StreamerGenerator | None = None

    @override
    def emit(self) -> fastrtc.tracks.EmitType:
        if self.generator is None:
            return None

        try:
            return next(self.generator)
        except StopIteration:
            self.generator = None
            return None

    @override
    def receive(self, frame: tuple[int, np.ndarray]):
        _, audio_data = frame
        for event in self.realtime_vad.process(audio_data):
            if event.interrupt_signal:
                self.generator = None
                self.clear_queue()
            if event.full_audio is not None:
                self.wait_for_args_sync()
                self.latest_args[0] = event.full_audio
                self.generator = self.streamer_fn(*self.latest_args)

    @override
    def copy(self):
        return VADStreamHandler(
            self.streamer_fn,
            input_sample_rate=self.input_sample_rate,
        )