Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,982 Bytes
8a819c3 652a642 8a819c3 aae7b76 8a819c3 a69b7d4 8a819c3 80f7eb2 8a819c3 a69b7d4 8a819c3 652a642 8a819c3 652a642 8a819c3 652a642 8a819c3 a69b7d4 8a819c3 652a642 8a819c3 652a642 8a819c3 f4ff24d 8a819c3 4b1c031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 |
import subprocess
from huggingface_hub import snapshot_download, hf_hub_download
def sh(cmd): subprocess.check_call(cmd, shell=True)
snapshot_download(
repo_id = "alexnasa/outofsync",
local_dir = "./outofsync"
)
sh("cd outofsync && pip install . && cd ..")
sh("pip uninstall onnxruntime onnxruntime-gpu -y && pip install onnxruntime-gpu")
import os
import shutil
src = "checkpoints" # your source folder
dst = "/home/user/.cache/torch/hub/checkpoints"
# Create destination folder if it doesn't exist
os.makedirs(dst, exist_ok=True)
# Copy each item from src β dst
for item in os.listdir(src):
s = os.path.join(src, item)
d = os.path.join(dst, item)
if os.path.isdir(s):
# Copy directory
shutil.copytree(s, d, dirs_exist_ok=True)
else:
# Copy file
shutil.copy2(s, d)
print("β Done copying checkpoints!")
import spaces
import io
import torch
import inspect
import pyannote.audio.core.task as task_module
from pathlib import Path
from pydub import AudioSegment
import math
# Collect all classes from pyannote.audio.core.task
safe_globals = [torch.torch_version.TorchVersion]
for name, obj in inspect.getmembers(task_module):
if inspect.isclass(obj):
safe_globals.append(obj)
# Allow these classes to be used when unpickling weights with weights_only=True
torch.serialization.add_safe_globals(safe_globals)
from typing import List, Dict
import time
from time_util import timer
import os, pathlib, sys, ctypes
import uuid
# preload the CNN component
ctypes.CDLL("/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn.so.9")
# print(os.environ.get('LD_LIBRARY_PATH', ''))
import torch, ctranslate2, os
import numpy as np
from pydub import AudioSegment
from faster_whisper import WhisperModel
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.utils.hook import ProgressHook
import gradio as gr
from pydub import AudioSegment
import srt
import io
from pydub import AudioSegment
import math
from datetime import timedelta
import torchaudio
import tigersound.look2hear.models
@spaces.GPU()
def print_ort():
import onnxruntime as ort
print(ort.get_available_providers())
print_ort()
current_dir = os.path.dirname(os.path.abspath(__file__))
snapshot_download("IndexTeam/IndexTTS-2", local_dir=os.path.join(current_dir,"checkpoints"))
dnr_model = tigersound.look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR").to("cuda").eval()
sh(f"pip install --no-deps git+https://github.com/OutofAi/index-tts.git")
from indextts.infer_v2 import IndexTTS2
MODE = 'local'
tts = IndexTTS2(model_dir="./checkpoints",
cfg_path=os.path.join("./checkpoints", "config.yaml"),
use_fp16=True,
use_deepspeed=False,
use_cuda_kernel=False,
)
os.environ["PROCESSED_RESULTS"] = f"{os.getcwd()}/proprocess_results"
from lipsync import apply_lipsync
def split_subtitles_max_duration(
subtitles,
max_seconds: float = 10.0,
min_last_chunk_seconds: float = 1.0,
):
"""
Take a list of srt.Subtitle and return a new list where
no subtitle duration is longer than max_seconds, except that
the *last* chunk is allowed to exceed max_seconds slightly
if the leftover duration would otherwise be less than
min_last_chunk_seconds.
Text is split by words roughly evenly across the chunks.
"""
max_td = timedelta(seconds=max_seconds)
new_subs = []
new_index = 1
for sub in subtitles:
start = sub.start
end = sub.end
duration = end - start
total_secs = duration.total_seconds()
# If already short enough, just copy it
if total_secs <= max_seconds:
new_subs.append(
srt.Subtitle(
index=new_index,
start=start,
end=end,
content=sub.content,
)
)
new_index += 1
continue
# Need to split this subtitle
words = sub.content.split()
if not words:
# No text, skip
continue
# --- Determine number of chunks, avoiding tiny last chunk ---
base_chunks = int(total_secs // max_seconds)
remainder = total_secs - base_chunks * max_seconds
if base_chunks == 0:
# total_secs > max_seconds due to earlier check, but just in case
num_chunks = 1
else:
if remainder == 0:
num_chunks = base_chunks
elif remainder < min_last_chunk_seconds:
# Don't create a tiny last chunk; merge its time into previous chunks
num_chunks = base_chunks
else:
num_chunks = base_chunks + 1
# Ensure at least one chunk
num_chunks = max(1, num_chunks)
# Words per chunk (roughly even)
words_per_chunk = max(1, int(math.ceil(len(words) / num_chunks)))
chunk_start = start
word_idx = 0
for chunk_idx in range(num_chunks):
# Last chunk takes us all the way to the original end,
# so it can be slightly > max_seconds if needed.
if chunk_idx == num_chunks - 1:
chunk_end = end
else:
chunk_end = min(end, chunk_start + max_td)
if chunk_end <= chunk_start:
break
chunk_words = words[word_idx:word_idx + words_per_chunk]
word_idx += words_per_chunk
if not chunk_words:
break
new_subs.append(
srt.Subtitle(
index=new_index,
start=chunk_start,
end=chunk_end,
content=" ".join(chunk_words),
)
)
new_index += 1
chunk_start = chunk_end
return new_subs
def split_text_into_chunks(text, max_chars=400):
"""
Rough splitter: breaks text into chunks <= max_chars,
preferring to split at sentence boundaries, then spaces.
"""
text = text.strip()
chunks = []
while len(text) > max_chars:
# Try to split at the last sentence end before max_chars
split_at = max(
text.rfind(". ", 0, max_chars),
text.rfind("! ", 0, max_chars),
text.rfind("? ", 0, max_chars),
)
# If there was no sentence boundary, fall back to last space
if split_at == -1:
split_at = text.rfind(" ", 0, max_chars)
# If still nothing, just hard cut
if split_at == -1:
split_at = max_chars
chunk = text[:split_at + 1].strip()
chunks.append(chunk)
text = text[split_at + 1 :].strip()
if text:
chunks.append(text)
return chunks
def sh(cmd): subprocess.check_call(cmd, shell=True)
# sh("find / -name \"libcudnn*\" 2>/dev/null")
# --------------------
# CONFIG
# --------------------
MODEL_SIZE = "medium" # e.g. "small", "medium", "large-v2"
MIN_SEGMENT_SECONDS = 0.5 # only transcribe segments longer than this
# If your pyannote pipeline needs a HF token, set it here or via env var:
# HUGGINGFACE_TOKEN = "hf_..."
HF_TOKEN = os.getenv("HF_TOKEN", None)
# --------------------
# LOAD GLOBAL MODELS (ONCE)
# --------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading pyannote diarization model...")
diarization_pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1"
)
# --------------------
# HELPERS
# --------------------
def format_timestamp(ts: float) -> str:
"""Convert seconds to SRT timestamp format."""
hrs = int(ts // 3600)
mins = int((ts % 3600) // 60)
secs = int(ts % 60)
ms = int((ts - int(ts)) * 1000)
return f"{hrs:02d}:{mins:02d}:{secs:02d},{ms:03d}"
def extract_audio_to_wav(input_video: str, output_dir: str):
audio_file = os.path.join(output_dir, "audio_og.wav")
background_file = os.path.join(output_dir, "background_og.wav")
vocal_file = os.path.join(output_dir, "vocal_og.wav")
effect_file = os.path.join(output_dir, "effect_og.wav")
audio_16k_file = os.path.join(output_dir, "audio_16k.wav")
video_path = input_video
separator_dir = Path(os.path.join(output_dir, "separator_directory"))
os.makedirs(separator_dir, exist_ok=True)
# Extract raw audio
cmd = [
"ffmpeg",
"-loglevel", "error",
"-i", video_path,
"-vn",
"-acodec", "pcm_s16le",
"-ar", "44100",
"-ac", "2",
audio_file
]
subprocess.run(cmd, check=True)
audio, sr = torchaudio.load(audio_file)
audio = audio.to("cuda")
with torch.no_grad():
dialog, effect, music = dnr_model(audio[None])
torchaudio.save(vocal_file, dialog.cpu(), sr)
torchaudio.save(effect_file, effect.cpu(), sr)
torchaudio.save(background_file, music.cpu(), sr)
# Convert vocals to 16k mono
cmd = [
"ffmpeg",
"-loglevel", "error",
"-y",
"-i", vocal_file,
"-ac", "1",
"-ar", "16000",
"-acodec", "pcm_s16le",
audio_16k_file
]
subprocess.run(cmd, check=True)
return audio_file, effect_file, background_file, audio_16k_file, vocal_file
def diarize_audio(audio_path: str) -> List[Dict]:
"""Run pyannote diarization and return segments."""
diarization_pipeline.to(torch.device(device))
with ProgressHook() as hook:
diarization_result = diarization_pipeline(audio_path, hook=hook)
segments = []
for segment, _, speaker in diarization_result.itertracks(yield_label=True):
duration = segment.end - segment.start
if duration >= MIN_SEGMENT_SECONDS:
segments.append(
{
"start": float(segment.start),
"end": float(segment.end),
"speaker": speaker,
}
)
segments.sort(key=lambda x: x["start"])
return segments
def chunk_to_float32(chunk: AudioSegment) -> np.ndarray:
"""Convert a pydub chunk to mono 16kHz float32 numpy array in [-1, 1]."""
chunk = chunk.set_frame_rate(16000).set_channels(1)
samples = np.array(chunk.get_array_of_samples())
# Normalize based on sample width
if chunk.sample_width == 2: # 16-bit
samples = samples.astype(np.float32) / 32768.0
elif chunk.sample_width == 4: # 32-bit
samples = samples.astype(np.float32) / 2147483648.0
else:
samples = samples.astype(np.float32)
return samples
def transcribe_segment(whisper_model, samples: np.ndarray) -> str:
"""Transcribe+translate a single segment with faster-whisper."""
segment_text_parts = []
segments, info = whisper_model.transcribe(
samples,
beam_size=1,
vad_filter=False, # diarization already detected speech
condition_on_previous_text=True, # independent segments
task="translate", # translate to English
word_timestamps=True,
)
for seg in segments:
if seg.text:
segment_text_parts.append(seg.text.strip())
return " ".join(segment_text_parts)
def transcribe_segment_words(
whisper_model,
samples: np.ndarray,
offset_sec: float,
speaker: str | None = None,
):
"""
Transcribe+translate a single diarization segment, returning a
list of word dicts with absolute timestamps.
"""
words_out = []
segments, info = whisper_model.transcribe(
samples,
beam_size=1,
vad_filter=False, # diarization already detected speech
condition_on_previous_text=False, # better for hard cuts / segments
task="translate",
word_timestamps=True,
)
for seg in segments:
if not seg.words:
continue
for w in seg.words:
words_out.append(
{
"start": offset_sec + float(w.start),
"end": offset_sec + float(w.end),
"text": w.word,
"speaker": speaker,
}
)
return words_out
def words_to_subtitles(words, max_seconds: float = 10.0):
"""
Group word-level timings into SRT subtitles, each up to max_seconds long,
cutting ONLY at word boundaries, AND never mixing speakers in the same subtitle.
Whenever the speaker changes, we close the current subtitle and start a new one.
Expects each word dict to have:
- "start" (float, seconds)
- "end" (float, seconds)
- "text" (str)
- "speaker" (str or None)
"""
# sort just in case
words = sorted(words, key=lambda w: w["start"])
subtitles = []
current_words = []
current_start = None
current_speaker = None
index = 1
for w in words:
w_start = w["start"]
w_end = w["end"]
w_speaker = w.get("speaker")
if current_start is None:
# start first subtitle
current_start = w_start
current_words = [w]
current_speaker = w_speaker
continue
speaker_changed = (w_speaker != current_speaker)
duration_if_added = w_end - current_start
exceeds_max = duration_if_added > max_seconds
# If adding this word would:
# - exceed max_seconds, OR
# - cross into a different speaker,
# then we close the current subtitle and start a new one.
if (speaker_changed or exceeds_max) and current_words:
text = " ".join(x["text"] for x in current_words).strip()
sub_start = current_start
sub_end = current_words[-1]["end"]
subtitles.append(
srt.Subtitle(
index=index,
start=timedelta(seconds=sub_start),
end=timedelta(seconds=sub_end),
content=text,
)
)
index += 1
# start new subtitle from this word
current_start = w_start
current_words = [w]
current_speaker = w_speaker
else:
current_words.append(w)
# flush last subtitle
if current_words:
text = " ".join(x["text"] for x in current_words).strip()
sub_start = current_start
sub_end = current_words[-1]["end"]
subtitles.append(
srt.Subtitle(
index=index,
start=timedelta(seconds=sub_start),
end=timedelta(seconds=sub_end),
content=text,
)
)
return subtitles
def build_srt(segments: List[Dict], audio_wav: str, out_srt_path: str):
"""
Generate SRT file from diarized segments and audio,
using word-level timestamps and grouping into ~10s subtitles.
"""
audio = AudioSegment.from_file(audio_wav)
print(f"Loading faster-whisper model ({MODEL_SIZE})...")
whisper_model = WhisperModel(
MODEL_SIZE,
device="cuda",
compute_type="float16",
)
all_words = []
for i, seg in enumerate(segments, start=1):
start_sec = seg["start"]
end_sec = seg["end"]
speaker = seg["speaker"]
start_ms = int(start_sec * 1000)
end_ms = int(end_sec * 1000)
chunk = audio[start_ms:end_ms]
samples = chunk_to_float32(chunk)
# get words for this diar segment, with absolute times
seg_words = transcribe_segment_words(
whisper_model,
samples,
offset_sec=start_sec,
speaker=speaker,
)
all_words.extend(seg_words)
print(f"Diar segment {i} ({speaker}): {len(seg_words)} words")
# group words into β€10s subtitles, word aligned
subtitles = words_to_subtitles(all_words, max_seconds=10.0)
# write SRT
with open(out_srt_path, "w", encoding="utf-8") as f:
f.write(srt.compose(subtitles))
def translate_video(video_file, duration):
return process_video(video_file, False, duration)
def translate_lipsync_video(video_file, duration):
return process_video(video_file, True, duration)
def run_example(video_file, allow_lipsync, duration):
with timer("processed"):
result = process_video(video_file, allow_lipsync, duration)
return result
def get_duration(video_file, allow_lipsync, duration):
if allow_lipsync:
if duration <= 3:
return 30
elif duration <= 5:
return 60
elif duration <= 10:
return 90
elif duration <= 20:
return 120
elif duration <= 30:
return 150
else:
return 40
@spaces.GPU(duration=get_duration)
def process_video(video_file, allow_lipsync, duration):
"""
Gradio callback:
- video_file: temp file object/path from Gradio
- returns path to generated SRT file (for download)
"""
if video_file is None:
raise gr.Error("Please upload an MP4 video.")
session_id = uuid.uuid4().hex
output_dir = os.path.join(os.environ["PROCESSED_RESULTS"], session_id)
os.makedirs(output_dir, exist_ok=True)
# Gradio's File/Video component gives dict or str depending on version
if isinstance(video_file, dict):
video_path = video_file.get("name") or video_file.get("path")
else:
video_path = video_file
if video_path is None or not os.path.exists(video_path):
raise gr.Error("Could not read uploaded video file.")
# Create temp directory to hold WAV + SRT
srt_path = os.path.join(output_dir, "diarized_translated.srt")
src_video_path = video_path
cropped_video_path = os.path.join(output_dir, "input_30s.mp4")
duration_s = int(duration)
print(f"duration_s:{duration_s}")
cmd = [
"ffmpeg",
"-y",
"-i", src_video_path,
"-t", f"{duration_s}",
"-c", "copy", # stream copy, no re-encode
cropped_video_path,
]
subprocess.run(cmd, check=True)
video_path = cropped_video_path
# 1. Extract audio
audio_wav, effect_wav, background_wav, audio_16k_wav, vocal_wav = extract_audio_to_wav(video_path, output_dir)
# 2. Diarization
segments = diarize_audio(audio_16k_wav)
if not segments:
raise gr.Error("No valid speech segments found for diarization.")
# 3. Build SRT from diarized segments + whisper
with timer("Generating srt"):
build_srt(segments, audio_16k_wav, srt_path)
# ---- ORIGINAL SRT (used for TTS) ----
with open(srt_path, "r", encoding="utf-8") as f:
srt_data = f.read()
subtitles = list(srt.parse(srt_data))
# Keep this list as-is for TTS timing
tts_subtitles = subtitles
# ---- CREATE 10s-MAX SRT FOR DOWNLOAD ----
max10_subtitles = tts_subtitles
# max10_subtitles = split_subtitles_max_duration(subtitles, max_seconds=10.0)
tts_subtitles = max10_subtitles
srt_10s_path = os.path.join(output_dir, "diarized_translated_max10s.srt")
with open(srt_10s_path, "w", encoding="utf-8") as f:
f.write(srt.compose(max10_subtitles))
# ---- TTS USING ORIGINAL SRT ----
last_end_seconds = tts_subtitles[-1].end.total_seconds()
total_ms = int((last_end_seconds + 1) * 1000)
timeline = AudioSegment.silent(duration=total_ms)
original_audio = AudioSegment.from_file(audio_wav)
MAX_BATCH_MS = 300_000 # ~5 minutes of target subtitle duration per batch
with timer("Generating speech"):
num_subs = len(tts_subtitles)
idx = 0
while idx < num_subs:
spk_prompts = [] # paths to src_prompt_*.wav
texts = [] # subtitle texts for this batch
out_paths = [] # where IndexTTS2 will save generated wavs
starts_ms = [] # for overlaying later
target_ms_list = [] # per-subtitle target durations
batch_ms_sum = 0
batch_start = idx
# ---- fill one batch until we hit ~MAX_BATCH_MS ----
while idx < num_subs:
sub = tts_subtitles[idx]
start_ms = int(sub.start.total_seconds() * 1000)
end_ms = int(sub.end.total_seconds() * 1000)
target_ms = max(end_ms - start_ms, 0)
# If adding this subtitle would exceed the limit and we already
# have something in the batch, stop and process the current batch.
if batch_ms_sum + target_ms > MAX_BATCH_MS and len(target_ms_list) > 0:
break
global_idx = idx
# 1) prompt audio for this subtitle
src_chunk = original_audio[start_ms:end_ms]
src_prompt_path = os.path.join(output_dir, f"src_prompt_{global_idx}.wav")
src_chunk.export(src_prompt_path, format="wav")
# 2) text + output path
text = sub.content.replace("\n", " ")
out_path = os.path.join(output_dir, f"gen_{global_idx}.wav")
spk_prompts.append(src_prompt_path)
texts.append(text)
out_paths.append(out_path)
starts_ms.append(start_ms)
target_ms_list.append(target_ms)
batch_ms_sum += target_ms
idx += 1
print(f"batch from {batch_start} to {idx - 1}, batch_ms_sum: {batch_ms_sum}")
# --- call batched TTS once for this batch ---
do_sample = True
top_p = 0.8
top_k = 30
temperature = 0.8
length_penalty = 0.0
num_beams = 3
repetition_penalty = 10.0
max_mel_tokens = 1500
# You could compute some aggregate target_length_ms here if your API supports it,
# e.g. avg or max(target_ms_list). For now, keep None as before.
tts_outputs = tts.infer_batch(
spk_audio_prompts=spk_prompts,
texts=texts,
output_paths=out_paths,
emo_audio_prompts=None,
emo_alpha=1.0,
emo_vectors=None,
use_emo_text=False,
emo_texts=None,
use_random=False,
interval_silence=200,
verbose=False,
max_text_tokens_per_segment=120,
speed=1.0,
target_length_ms=target_ms_list,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_mel_tokens=max_mel_tokens,
)
# --- read generated wavs and overlay them ---
for local_idx, out_path in enumerate(tts_outputs):
start_ms = starts_ms[local_idx]
seg = AudioSegment.from_file(out_path, format="wav")
seg = seg - 2
timeline = timeline.overlay(seg, position=start_ms)
# cleanup
os.remove(out_path)
os.remove(spk_prompts[local_idx])
# -------------------------------------------------------
# Bring back original dialog in the *gaps* (grunts, etc.)
# -------------------------------------------------------
# Load separated dialog track
dialog = AudioSegment.from_file(vocal_wav)
# Make sure it matches the TTS timeline parameters
dialog = dialog.set_frame_rate(timeline.frame_rate).set_channels(timeline.channels)
total_len_ms = len(timeline)
# Collect speech regions from subtitles (approximate "where TTS will speak")
speech_regions = []
for sub in tts_subtitles:
start_ms = int(sub.start.total_seconds() * 1000)
end_ms = int(sub.end.total_seconds() * 1000)
# clamp to track length
start_ms = max(0, min(start_ms, total_len_ms))
end_ms = max(0, min(end_ms, total_len_ms))
if end_ms > start_ms:
speech_regions.append((start_ms, end_ms))
# Merge overlapping/adjacent regions
speech_regions.sort()
merged = []
for s, e in speech_regions:
if not merged:
merged.append([s, e])
else:
last_s, last_e = merged[-1]
if s <= last_e: # overlap or touch
merged[-1][1] = max(last_e, e)
else:
merged.append([s, e])
# Compute the complement: regions where there's NO subtitle (gaps)
gaps = []
cursor = 0
for s, e in merged:
if cursor < s:
gaps.append((cursor, s))
cursor = max(cursor, e)
if cursor < total_len_ms:
gaps.append((cursor, total_len_ms))
# Overlay original dialog only in those gaps
MIN_GAP_MS = 10 # ignore ultra-tiny gaps
for g_start, g_end in gaps:
if g_end - g_start < MIN_GAP_MS:
continue
# Extract that piece of the original dialog
original_chunk = dialog[g_start:g_end]
original_chunk = original_chunk + 6
timeline = timeline.overlay(original_chunk, position=g_start)
video_in = video_path
audio_in = output_dir + "/final_output.wav"
audio_16k_in = output_dir + "/final_16k_output.wav"
# ---------- 5. Mix background + new TTS vocal ----------
if background_wav is not None:
eff = AudioSegment.from_file(effect_wav)
bg = AudioSegment.from_file(background_wav)
# If background is shorter than the TTS timeline, loop it
if len(eff) < len(timeline):
loops = math.ceil(len(timeline) / len(eff))
eff = eff * loops
if len(bg) < len(timeline):
loops = math.ceil(len(timeline) / len(bg))
bg = bg * loops
# Cut or match to TTS length
eff = eff[:len(timeline)]
bg = bg[:len(timeline)]
bg = bg + 6
eff = eff + 6
eff_timeline = eff.overlay(timeline)
final_audio = bg.overlay(eff_timeline)
final_16k_audio = timeline.set_frame_rate(16000).set_channels(1)
else:
# Fallback: no background found, just use TTS
final_audio = timeline
final_16k_audio = timeline
final_audio.export(audio_in, format="wav")
final_16k_audio.export(audio_16k_in, format="wav")
print(f"Done! Saved to {audio_in}")
lipsynced_video = output_dir + "/output_with_lipsync_16k.mp4"
if allow_lipsync:
apply_lipsync(video_in, audio_16k_in, lipsynced_video)
else:
lipsynced_video = video_in
video_out = output_dir + "/output_with_lipsync.mp4"
cmd = [
"ffmpeg",
"-loglevel", "error",
"-y", # overwrite output file
"-i", lipsynced_video, # input video
"-i", audio_in, # new audio
"-c:v", "copy", # do not re-encode video
"-map", "0:v:0", # take video from input 0
"-map", "1:a:0", # take audio from input 1
"-shortest", # stop when either track ends
video_out,
]
subprocess.run(cmd, check=True)
# IMPORTANT: return the 10s-max SRT for download
return video_out, srt_10s_path, audio_16k_in
css = """
#col-container {
margin: 0 auto;
max-width: 1600px;
}
#modal-container {
width: 100vw; /* Take full viewport width */
height: 100vh; /* Take full viewport height (optional) */
display: flex;
justify-content: center; /* Center content horizontally */
align-items: center; /* Center content vertically if desired */
}
#modal-content {
width: 100%;
max-width: 700px; /* Limit content width */
margin: 0 auto;
border-radius: 8px;
padding: 1.5rem;
}
#step-column {
padding: 10px;
border-radius: 8px;
box-shadow: var(--card-shadow);
margin: 10px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
.button-gradient {
background: linear-gradient(45deg, rgb(255, 65, 108), rgb(255, 75, 43), rgb(255, 155, 0), rgb(255, 65, 108)) 0% 0% / 400% 400%;
border: none;
padding: 14px 28px;
font-size: 16px;
font-weight: bold;
color: white;
border-radius: 10px;
cursor: pointer;
transition: 0.3s ease-in-out;
animation: 2s linear 0s infinite normal none running gradientAnimation;
box-shadow: rgba(255, 65, 108, 0.6) 0px 4px 10px;
}
.toggle-container {
display: inline-flex;
background-color: #ffd6ff; /* light pink background */
border-radius: 9999px;
padding: 4px;
position: relative;
width: fit-content;
font-family: sans-serif;
}
.toggle-container input[type="radio"] {
display: none;
}
.toggle-container label {
position: relative;
z-index: 2;
flex: 1;
text-align: center;
font-weight: 700;
color: #4b2ab5; /* dark purple text for unselected */
padding: 6px 22px;
border-radius: 9999px;
cursor: pointer;
transition: color 0.25s ease;
}
/* Moving highlight */
.toggle-highlight {
position: absolute;
top: 4px;
left: 4px;
width: calc(50% - 4px);
height: calc(100% - 8px);
background-color: #4b2ab5; /* dark purple background */
border-radius: 9999px;
transition: transform 0.25s ease;
z-index: 1;
}
/* When "True" is checked */
#true:checked ~ label[for="true"] {
color: #ffd6ff; /* light pink text */
}
/* When "False" is checked */
#false:checked ~ label[for="false"] {
color: #ffd6ff; /* light pink text */
}
/* Move highlight to right side when False is checked */
#false:checked ~ .toggle-highlight {
transform: translateX(100%);
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div style="text-align: center;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>OutofSync </strong>
</p>
<p style="font-size:16px; display: inline; margin: 0;">
-- HF Space By:
</p>
<a href="https://huggingface.co/alexnasa" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
<img src="https://img.shields.io/badge/π€-Follow Me-yellow.svg">
</a>
<a href="https://www.buymeacoffee.com/outofai" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>
<p style="font-size:16px; display: inline; margin: 0;">
Translate and lipsync your clips to English
</p>
</div>
"""
)
with gr.Row():
with gr.Column(elem_id="step-column"):
gr.HTML("""
<div>
<span style="font-size: 24px;">1. Upload a Video</span><br>
</div>
""")
video_input = gr.Video(
label="OG Clip",
height=512
)
duration = gr.Slider(5, 30, 10, step=1, label="Duration(s)")
with gr.Column(elem_id="step-column"):
gr.HTML("""
<div>
<span style="font-size: 24px;">2. Translate + π </span><br>
</div>
""")
video_output = gr.Video(label="Output", height=512)
lipsync = gr.Checkbox(label="Lipsync", value=False, visible=False)
translate_btn = gr.Button("π€ΉββοΈ Translate")
translate_lipsync_btn = gr.Button("π€ΉββοΈ Translate + π Lipsync", variant='primary', elem_classes="button-gradient")
with gr.Column(elem_id="step-column"):
gr.HTML("""
<div>
<span style="font-size: 24px;">Lipsynced Examples </span><br>
</div>
""")
vocal_16k_output = gr.File(label="Vocal 16k", visible=False)
srt_output = gr.File(label="Download translated diarized SRT", visible=False)
cached_examples = gr.Examples(
examples=[
[
"assets/spanish-2.mp4",
True,
10
],
[
"assets/spanish.mp4",
True,
10
],
[
"assets/german.mp4",
True,
10
],
[
"assets/italian.mp4",
True,
10
],
[
"assets/french-movie.mp4",
True,
10
],
],
label="Cached Examples",
fn=run_example,
inputs=[video_input, lipsync, duration],
outputs=[video_output, srt_output, vocal_16k_output],
cache_examples=True
)
translate_btn.click(
fn=translate_video,
inputs=[video_input, duration],
outputs=[video_output, srt_output, vocal_16k_output],
)
translate_lipsync_btn.click(
fn=translate_lipsync_video,
inputs=[video_input, duration],
outputs=[video_output, srt_output, vocal_16k_output],
)
if __name__ == "__main__":
demo.queue()
demo.launch() |