Spaces:
Sleeping
Sleeping
File size: 6,374 Bytes
312e168 1d9c190 312e168 1d9c190 312e168 19cd08b 312e168 1d9c190 d590e77 e69ac01 19cd08b 1d9c190 312e168 1d9c190 d590e77 1d9c190 312e168 1d9c190 312e168 1d9c190 312e168 1d9c190 312e168 1d9c190 312e168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
#!/usr/bin/env python3
"""
Hugging Face Spaces optimized version of the Indian Speech-to-Text application.
This version is specifically configured for deployment on Hugging Face Spaces.
"""
import os
import sys
import logging
from pathlib import Path
from dotenv import load_dotenv
# Explicitly load .env from ./config/env/.env
env_path = Path(__file__).parent / "config" / "env" / ".env"
load_dotenv(dotenv_path=env_path, override=True)
# Set up environment for Spaces
os.environ['APP_ENV'] = 'prod'
os.environ['GRADIO_SERVER_NAME'] = '0.0.0.0'
os.environ['GRADIO_SERVER_PORT'] = '7860'
os.environ['MODEL_CACHE_DIR'] = '/app/models'
os.environ['HF_HOME'] = '/app/models'
os.environ['TRANSFORMERS_CACHE'] = '/app/models'
os.environ['TORCH_HOME'] = '/app/models'
os.environ['XDG_CACHE_HOME'] = '/app/models'
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN') or os.getenv('HUGGINGFACE_HUB_TOKEN') or ""
# Add src to Python path
src_path = Path(__file__).parent / "src"
sys.path.insert(0, str(src_path))
# Configure logging for Spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def setup_spaces_environment():
"""Set up the environment specifically for Hugging Face Spaces."""
# Create model cache directory
model_cache_dir = Path(os.environ['MODEL_CACHE_DIR'])
model_cache_dir.mkdir(parents=True, exist_ok=True)
# Set Hugging Face token if available
hf_token = os.getenv('HF_TOKEN') or os.getenv('HUGGINGFACE_HUB_TOKEN')
if hf_token:
os.environ['HF_TOKEN'] = hf_token
logger.info("β
HuggingFace token found")
else:
logger.warning("β οΈ No HuggingFace token found - some models may not be accessible")
# GPU detection
try:
import torch
if torch.cuda.is_available():
logger.info(f"β
GPU detected: {torch.cuda.get_device_name(0)}")
os.environ['ENABLE_GPU'] = 'True'
else:
logger.info("π» Running on CPU")
os.environ['ENABLE_GPU'] = 'False'
except ImportError:
logger.warning("β οΈ PyTorch not available")
os.environ['ENABLE_GPU'] = 'False'
def download_essential_models():
"""Download essential models for Spaces deployment."""
try:
from scripts.download_models import ModelDownloader
logger.info("π Downloading essential models for Spaces...")
downloader = ModelDownloader(
cache_dir=os.environ['MODEL_CACHE_DIR'],
use_auth_token=os.getenv('HF_TOKEN')
)
# Download only essential models for Spaces (to save space and time)
essential_models = ["distil-whisper", "whisper-small"]
results = downloader.download_models(essential_models, force_download=False)
successful = sum(1 for success in results.values() if success)
logger.info(f"β
Downloaded {successful}/{len(essential_models)} essential models")
return successful > 0
except PermissionError as e:
logger.error(f"β Permission denied for model cache: {e}")
logger.info("π Using fallback model loading strategy...")
return True # Continue with app initialization
except Exception as e:
logger.error(f"β Error downloading models: {e}")
return False
def create_spaces_gradio_app():
"""Create Gradio app optimized for Spaces."""
try:
from ui.gradio_app import GradioSpeechToTextApp
logger.info("π Initializing Gradio app for Spaces...")
# Create app with Spaces-specific configuration
app = GradioSpeechToTextApp()
# Create interface with Spaces optimizations
interface = app.create_interface()
# Add Spaces-specific customizations
interface.title = "π€ Indian Speech-to-Text Models"
interface.description = """
## Free Open-Source Speech-to-Text for Indian Languages
This Space showcases multiple free, open-source speech-to-text models optimized for Indian languages.
**Available Models:**
- Distil-Whisper (6x faster than Whisper)
- OpenAI Whisper (best accuracy)
- Wav2Vec2 Hindi (specialized for Hindi)
**Supported Languages:** Hindi, Tamil, Bengali, Telugu, Marathi, Gujarati, Kannada, Malayalam, Punjabi, Odia, Assamese, Urdu, English
"""
return interface
except Exception as e:
logger.error(f"β Error creating Gradio app: {e}")
raise
def main():
"""Main function for Spaces deployment."""
logger.info("π€ Starting Indian Speech-to-Text Models on Hugging Face Spaces...")
# Set up Spaces environment
setup_spaces_environment()
# Download essential models
models_available = download_essential_models()
if not models_available:
logger.warning("β οΈ No models downloaded, but continuing with app initialization...")
# Create and launch Gradio app
try:
interface = create_spaces_gradio_app()
logger.info("π Launching Gradio interface...")
# Launch with Spaces-specific settings
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # Spaces handles sharing
show_error=True,
quiet=False,
max_threads=10, # Limit concurrent threads
)
except Exception as e:
logger.error(f"β Failed to launch Gradio app: {e}")
# Fallback: Create a simple error page
import gradio as gr
def error_message():
return "β Application failed to initialize. Please check the logs."
error_interface = gr.Interface(
fn=error_message,
inputs=[],
outputs=gr.Textbox(label="Status"),
title="π€ Indian Speech-to-Text Models - Error",
description="There was an error initializing the application."
)
error_interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
if __name__ == "__main__":
main()
|