File size: 11,001 Bytes
312e168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import tensorflow as tf
import torch
import numpy as np
from typing import Optional, Union, Dict
import logging
from transformers import TFAutoModel, AutoTokenizer

class TensorFlowOptimizer:
    """
    TensorFlow integration for model optimization and inference acceleration.
    Provides TensorFlow Lite conversion and GPU optimization.
    """
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        
        # Configure TensorFlow
        self._configure_tensorflow()
    
    def _configure_tensorflow(self):
        """Configure TensorFlow for optimal performance."""
        try:
            # Enable mixed precision
            tf.keras.mixed_precision.set_global_policy('mixed_float16')
            
            # Configure GPU memory growth
            gpus = tf.config.experimental.list_physical_devices('GPU')
            if gpus:
                for gpu in gpus:
                    tf.config.experimental.set_memory_growth(gpu, True)
                self.logger.info(f"Configured {len(gpus)} GPU(s) for TensorFlow")
            else:
                self.logger.info("No GPUs found, using CPU")
                
        except Exception as e:
            self.logger.warning(f"TensorFlow configuration warning: {e}")
    
    def convert_to_tensorflow_lite(self, model_path: str, output_path: str, 
                                 quantize: bool = True) -> bool:
        """
        Convert a model to TensorFlow Lite for mobile/edge deployment.
        
        Args:
            model_path: Path to the saved model
            output_path: Path for the TFLite model
            quantize: Whether to apply quantization
            
        Returns:
            Success status
        """
        try:
            # Load the model
            converter = tf.lite.TFLiteConverter.from_saved_model(model_path)
            
            if quantize:
                # Apply dynamic range quantization
                converter.optimizations = [tf.lite.Optimize.DEFAULT]
                
                # For better quantization, use representative dataset
                converter.representative_dataset = self._representative_dataset_gen
                converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
                converter.inference_input_type = tf.int8
                converter.inference_output_type = tf.int8
            
            # Convert the model
            tflite_model = converter.convert()
            
            # Save the model
            with open(output_path, 'wb') as f:
                f.write(tflite_model)
            
            self.logger.info(f"Successfully converted model to TFLite: {output_path}")
            return True
            
        except Exception as e:
            self.logger.error(f"TFLite conversion failed: {e}")
            return False
    
    def _representative_dataset_gen(self):
        """Generate representative dataset for quantization."""
        # Generate dummy audio data for quantization calibration
        for _ in range(100):
            # Simulate 16kHz audio for 1 second
            dummy_audio = np.random.randn(1, 16000).astype(np.float32)
            yield [dummy_audio]
    
    def optimize_for_inference(self, model, input_shape: tuple) -> tf.keras.Model:
        """
        Optimize a TensorFlow model for inference.
        
        Args:
            model: TensorFlow model to optimize
            input_shape: Expected input shape
            
        Returns:
            Optimized model
        """
        try:
            # Create concrete function for optimization
            @tf.function
            def inference_func(x):
                return model(x, training=False)
            
            # Get concrete function
            concrete_func = inference_func.get_concrete_function(
                tf.TensorSpec(shape=input_shape, dtype=tf.float32)
            )
            
            # Apply graph optimization
            optimized_func = tf.function(concrete_func)
            
            self.logger.info("Model optimized for inference")
            return optimized_func
            
        except Exception as e:
            self.logger.error(f"Inference optimization failed: {e}")
            return model
    
    def benchmark_model(self, model, input_shape: tuple, num_runs: int = 100) -> Dict:
        """
        Benchmark model performance.
        
        Args:
            model: Model to benchmark
            input_shape: Input shape for testing
            num_runs: Number of benchmark runs
            
        Returns:
            Performance metrics
        """
        try:
            # Generate test input
            test_input = tf.random.normal(input_shape)
            
            # Warmup runs
            for _ in range(10):
                _ = model(test_input)
            
            # Benchmark runs
            import time
            start_time = time.time()
            
            for _ in range(num_runs):
                _ = model(test_input)
            
            end_time = time.time()
            
            # Calculate metrics
            total_time = end_time - start_time
            avg_time = total_time / num_runs
            throughput = num_runs / total_time
            
            metrics = {
                "total_time": total_time,
                "average_inference_time": avg_time,
                "throughput_fps": throughput,
                "num_runs": num_runs
            }
            
            self.logger.info(f"Benchmark results: {metrics}")
            return metrics
            
        except Exception as e:
            self.logger.error(f"Benchmarking failed: {e}")
            return {}
    
    def create_serving_signature(self, model, input_spec: Dict) -> tf.keras.Model:
        """
        Create a model with serving signature for deployment.
        
        Args:
            model: TensorFlow model
            input_spec: Input specification dictionary
            
        Returns:
            Model with serving signature
        """
        try:
            # Define serving function
            @tf.function
            def serve_fn(audio_input):
                # Preprocess input if needed
                processed_input = tf.cast(audio_input, tf.float32)
                
                # Run inference
                output = model(processed_input)
                
                # Post-process output if needed
                return {"transcription": output}
            
            # Create serving signature
            signatures = {
                "serving_default": serve_fn.get_concrete_function(
                    audio_input=tf.TensorSpec(
                        shape=input_spec.get("shape", [None, None]), 
                        dtype=tf.float32,
                        name="audio_input"
                    )
                )
            }
            
            # Save model with signature
            model._signatures = signatures
            
            self.logger.info("Created serving signature for model")
            return model
            
        except Exception as e:
            self.logger.error(f"Serving signature creation failed: {e}")
            return model

class TensorFlowSpeechModel:
    """
    TensorFlow-native speech-to-text model wrapper.
    Provides optimized inference using TensorFlow operations.
    """
    
    def __init__(self, model_name: str, use_mixed_precision: bool = True):
        self.model_name = model_name
        self.use_mixed_precision = use_mixed_precision
        self.logger = logging.getLogger(__name__)
        
        # Initialize TensorFlow optimizer
        self.tf_optimizer = TensorFlowOptimizer()
        
        # Load model
        self.model = None
        self.tokenizer = None
        self._load_model()
    
    def _load_model(self):
        """Load TensorFlow version of the model."""
        try:
            # Try to load TensorFlow version
            self.model = TFAutoModel.from_pretrained(
                self.model_name,
                from_tf=True
            )
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            
            # Optimize for inference
            if hasattr(self.model, 'config'):
                input_shape = (1, self.model.config.max_position_embeddings)
                self.model = self.tf_optimizer.optimize_for_inference(
                    self.model, input_shape
                )
            
            self.logger.info(f"Loaded TensorFlow model: {self.model_name}")
            
        except Exception as e:
            self.logger.warning(f"TensorFlow model loading failed: {e}")
            self.model = None
    
    def transcribe(self, audio_input: np.ndarray) -> str:
        """
        Transcribe audio using TensorFlow model.
        
        Args:
            audio_input: Audio data as numpy array
            
        Returns:
            Transcribed text
        """
        if self.model is None:
            raise ValueError("Model not loaded")
        
        try:
            # Convert to TensorFlow tensor
            audio_tensor = tf.convert_to_tensor(audio_input, dtype=tf.float32)
            
            # Add batch dimension if needed
            if len(audio_tensor.shape) == 1:
                audio_tensor = tf.expand_dims(audio_tensor, 0)
            
            # Run inference
            with tf.device('/GPU:0' if tf.config.list_physical_devices('GPU') else '/CPU:0'):
                outputs = self.model(audio_tensor)
            
            # Process outputs (this would depend on the specific model)
            # For now, return a placeholder
            return "TensorFlow transcription result"
            
        except Exception as e:
            self.logger.error(f"TensorFlow transcription failed: {e}")
            raise
    
    def benchmark(self, audio_shape: tuple = (1, 16000)) -> Dict:
        """Benchmark the TensorFlow model."""
        if self.model is None:
            return {"error": "Model not loaded"}
        
        return self.tf_optimizer.benchmark_model(self.model, audio_shape)
    
    def save_optimized_model(self, output_path: str) -> bool:
        """Save optimized model for deployment."""
        if self.model is None:
            return False
        
        try:
            # Create serving signature
            input_spec = {"shape": [None, 16000]}  # Audio input shape
            model_with_signature = self.tf_optimizer.create_serving_signature(
                self.model, input_spec
            )
            
            # Save model
            tf.saved_model.save(model_with_signature, output_path)
            
            self.logger.info(f"Saved optimized model to: {output_path}")
            return True
            
        except Exception as e:
            self.logger.error(f"Model saving failed: {e}")
            return False