File size: 17,253 Bytes
312e168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import gradio as gr
import os
import sys
import json
import time
from typing import List, Tuple, Optional
import numpy as np
import librosa
from pathlib import Path

# Add src to path for imports
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

from models.speech_to_text import FreeIndianSpeechToText
from utils.config import load_config
from utils.audio_utils import AudioProcessor

class GradioSpeechToTextApp:
    """
    Gradio web interface for Indian Speech-to-Text models.
    Provides an intuitive UI for testing different models and languages.
    """
    
    def __init__(self):
        self.config = load_config()
        self.current_model = None
        self.audio_processor = AudioProcessor()
        self.supported_languages = {
            "Hindi": "hi",
            "Tamil": "ta", 
            "Bengali": "bn",
            "Telugu": "te",
            "Marathi": "mr",
            "Gujarati": "gu",
            "Kannada": "kn",
            "Malayalam": "ml",
            "Punjabi": "pa",
            "Odia": "or",
            "Assamese": "as",
            "Urdu": "ur",
            "English": "en"
        }
        
        # Initialize with default model
        self.initialize_model()
    
    def initialize_model(self):
        """Initialize the default model."""
        try:
            default_model = self.config.get("DEFAULT_MODEL", "distil-whisper")
            self.current_model = FreeIndianSpeechToText(
                model_type=default_model,
                cache_dir=self.config.get("MODEL_CACHE_DIR", "./models")
            )
            return f"βœ… Initialized with {default_model} model"
        except Exception as e:
            return f"❌ Error initializing model: {str(e)}"
    
    def transcribe_audio(self, audio_input, model_choice: str, language_choice: str, 
                        enable_preprocessing: bool = True) -> Tuple[str, str, str]:
        """
        Main transcription function for Gradio interface.
        
        Returns:
            Tuple of (transcription_text, model_info, processing_stats)
        """
        if audio_input is None:
            return "❌ No audio provided", "", ""
        
        try:
            # Switch model if needed
            if not self.current_model or self.current_model.current_model_name != model_choice:
                status = self.switch_model(model_choice)
                if not status.startswith("βœ…"):
                    return f"❌ Model loading failed: {status}", "", ""
            
            # Get language code
            language_code = self.supported_languages.get(language_choice, "hi")
            
            # Preprocess audio if enabled
            if enable_preprocessing:
                try:
                    audio_data = self.audio_processor.preprocess_audio(audio_input)
                except Exception as e:
                    # Fallback to original audio if preprocessing fails
                    audio_data = audio_input
                    print(f"Preprocessing failed, using original: {e}")
            else:
                audio_data = audio_input
            
            # Perform transcription
            start_time = time.time()
            result = self.current_model.transcribe(audio_data, language_code)
            end_time = time.time()
            
            if result["success"]:
                # Format results
                transcription = result["text"]
                
                # Model information
                model_info = self.format_model_info(result)
                
                # Processing statistics
                processing_stats = self.format_processing_stats(result, end_time - start_time)
                
                return transcription, model_info, processing_stats
            else:
                return f"❌ Transcription failed: {result.get('error', 'Unknown error')}", "", ""
                
        except Exception as e:
            return f"❌ Error during transcription: {str(e)}", "", ""
    
    def switch_model(self, model_name: str) -> str:
        """Switch to a different model."""
        try:
            if self.current_model:
                success = self.current_model.switch_model(model_name)
                if success:
                    return f"βœ… Switched to {model_name}"
                else:
                    return f"❌ Failed to switch to {model_name}"
            else:
                self.current_model = FreeIndianSpeechToText(
                    model_type=model_name,
                    cache_dir=self.config.get("MODEL_CACHE_DIR", "./models")
                )
                return f"βœ… Loaded {model_name}"
        except Exception as e:
            return f"❌ Error switching model: {str(e)}"
    
    def batch_transcribe(self, files: List, model_choice: str, language_choice: str) -> str:
        """Batch transcription for multiple files."""
        if not files:
            return "❌ No files provided"
        
        try:
            # Switch model if needed
            if not self.current_model or self.current_model.current_model_name != model_choice:
                status = self.switch_model(model_choice)
                if not status.startswith("βœ…"):
                    return f"❌ Model loading failed: {status}"
            
            language_code = self.supported_languages.get(language_choice, "hi")
            
            # Process files
            file_paths = [file.name for file in files]
            results = self.current_model.batch_transcribe(file_paths, language_code)
            
            # Format results
            output = "# Batch Transcription Results\n\n"
            for i, result in enumerate(results, 1):
                if result["success"]:
                    output += f"## File {i}: {Path(result['file']).name}\n"
                    output += f"**Transcription:** {result['text']}\n"
                    output += f"**Processing Time:** {result.get('processing_time', 0):.2f}s\n\n"
                else:
                    output += f"## File {i}: {Path(result['file']).name}\n"
                    output += f"**Error:** {result.get('error', 'Unknown error')}\n\n"
            
            return output
            
        except Exception as e:
            return f"❌ Batch processing error: {str(e)}"
    
    def get_model_comparison(self) -> str:
        """Generate model comparison table."""
        if not self.current_model:
            return "❌ No model loaded"
        
        models = self.current_model.get_available_models()
        
        comparison = "# Available Models Comparison\n\n"
        comparison += "| Model | Type | Size | Languages | Description |\n"
        comparison += "|-------|------|------|-----------|-------------|\n"
        
        for name, config in models.items():
            comparison += f"| {name} | {config['type']} | {config['size']} | {config['languages']} | {config['description']} |\n"
        
        return comparison
    
    def format_model_info(self, result: dict) -> str:
        """Format model information for display."""
        model_info = f"""
**Model:** {result['model']}
**Device:** {result['device']}
**Language:** {result['language']}
"""
        return model_info.strip()
    
    def format_processing_stats(self, result: dict, total_time: float) -> str:
        """Format processing statistics."""
        stats = f"""
**Total Processing Time:** {total_time:.2f}s
**Model Processing Time:** {result.get('processing_time', 0):.2f}s
**Status:** {'βœ… Success' if result['success'] else '❌ Failed'}
"""
        return stats.strip()
    
    def create_interface(self) -> gr.Blocks:
        """Create the Gradio interface."""
        
        # Custom CSS for better styling
        css = """
        .gradio-container {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        }
        .model-info {
            background-color: #f0f8ff;
            padding: 10px;
            border-radius: 5px;
            border-left: 4px solid #4CAF50;
        }
        .stats-info {
            background-color: #fff8f0;
            padding: 10px;
            border-radius: 5px;
            border-left: 4px solid #ff9800;
        }
        """
        
        with gr.Blocks(css=css, title="Indian Speech-to-Text Models", theme=gr.themes.Soft()) as interface:
            
            gr.Markdown("""
            # 🎀 Complete Guide to Free Open-Source Speech-to-Text Models for Indian Languages
            
            This application provides access to multiple free, open-source speech-to-text models optimized for Indian languages.
            All models are completely free to use and can be deployed commercially.
            """)
            
            with gr.Tab("🎯 Single Audio Transcription"):
                with gr.Row():
                    with gr.Column(scale=2):
                        # Audio input
                        audio_input = gr.Audio(
                            label="Upload Audio File or Record",
                            type="filepath",
                            sources=["upload", "microphone"]
                        )
                        
                        # Model selection
                        model_choice = gr.Dropdown(
                            choices=[
                                "distil-whisper", "whisper-free", "whisper-small",
                                "wav2vec2-hindi", "wav2vec2-improved", "wav2vec2-multilang",
                                "seamless", "speecht5"
                            ],
                            value="distil-whisper",
                            label="Select Model",
                            info="Choose the speech-to-text model"
                        )
                        
                        # Language selection
                        language_choice = gr.Dropdown(
                            choices=list(self.supported_languages.keys()),
                            value="Hindi",
                            label="Select Language",
                            info="Choose the audio language"
                        )
                        
                        # Preprocessing option
                        enable_preprocessing = gr.Checkbox(
                            value=True,
                            label="Enable Audio Preprocessing",
                            info="Normalize and clean audio for better results"
                        )
                        
                        # Transcribe button
                        transcribe_btn = gr.Button("🎯 Transcribe Audio", variant="primary", size="lg")
                    
                    with gr.Column(scale=3):
                        # Results
                        transcription_output = gr.Textbox(
                            label="Transcription Result",
                            lines=6,
                            placeholder="Transcription will appear here..."
                        )
                        
                        with gr.Row():
                            model_info_output = gr.Markdown(
                                label="Model Information",
                                elem_classes=["model-info"]
                            )
                            
                            processing_stats = gr.Markdown(
                                label="Processing Statistics", 
                                elem_classes=["stats-info"]
                            )
            
            with gr.Tab("πŸ“ Batch Processing"):
                with gr.Row():
                    with gr.Column():
                        # File upload for batch processing
                        batch_files = gr.File(
                            label="Upload Multiple Audio Files",
                            file_count="multiple",
                            file_types=["audio"]
                        )
                        
                        # Model and language for batch
                        batch_model = gr.Dropdown(
                            choices=[
                                "distil-whisper", "whisper-free", "whisper-small",
                                "wav2vec2-hindi", "wav2vec2-improved"
                            ],
                            value="distil-whisper",
                            label="Select Model for Batch Processing"
                        )
                        
                        batch_language = gr.Dropdown(
                            choices=list(self.supported_languages.keys()),
                            value="Hindi",
                            label="Select Language for All Files"
                        )
                        
                        batch_btn = gr.Button("πŸš€ Process Batch", variant="primary")
                    
                    with gr.Column():
                        batch_results = gr.Markdown(
                            label="Batch Results",
                            value="Upload files and click 'Process Batch' to see results here."
                        )
            
            with gr.Tab("πŸ“Š Model Comparison"):
                gr.Markdown("## Model Performance Comparison")
                
                comparison_btn = gr.Button("πŸ“Š Generate Comparison Table")
                comparison_output = gr.Markdown()
                
                gr.Markdown("""
                ### Model Recommendations:
                
                - **Distil-Whisper Large-v3**: Best overall choice - 6x faster, 49% smaller, <1% WER difference
                - **OpenAI Whisper Large-v3**: Best accuracy for complex audio
                - **Wav2Vec2 Hindi Models**: Specialized for Hindi language
                - **Whisper Small**: Good balance for CPU-only deployment
                - **SeamlessM4T**: Best for multilingual scenarios (101 languages)
                """)
            
            with gr.Tab("ℹ️ About & Setup"):
                gr.Markdown("""
                ## About This Application
                
                This application showcases free, open-source speech-to-text models specifically optimized for Indian languages.
                All models are available under permissive licenses (MIT, Apache 2.0) and can be used commercially.
                
                ### Supported Languages:
                - Hindi, Tamil, Bengali, Telugu, Marathi
                - Gujarati, Kannada, Malayalam, Punjabi, Odia
                - Assamese, Urdu, English
                
                ### Key Features:
                - βœ… Multiple free model architectures
                - βœ… Real-time and batch processing
                - βœ… Audio preprocessing and optimization
                - βœ… Performance metrics and comparison
                - βœ… Commercial use allowed
                
                ### Technical Stack:
                - **Models**: Transformers, PyTorch, TensorFlow
                - **Interface**: Gradio
                - **Audio Processing**: Librosa, SoundFile
                - **Optimization**: CUDA support, Mixed precision
                
                ### Setup Instructions:
                1. Install dependencies: `pip install -r requirements.txt`
                2. Set environment: `export APP_ENV=local`
                3. Run application: `python app.py`
                """)
            
            # Event handlers
            transcribe_btn.click(
                fn=self.transcribe_audio,
                inputs=[audio_input, model_choice, language_choice, enable_preprocessing],
                outputs=[transcription_output, model_info_output, processing_stats]
            )
            
            batch_btn.click(
                fn=self.batch_transcribe,
                inputs=[batch_files, batch_model, batch_language],
                outputs=[batch_results]
            )
            
            comparison_btn.click(
                fn=self.get_model_comparison,
                outputs=[comparison_output]
            )
        
        return interface
    
    def launch(self, share: bool = None, server_name: str = None, server_port: int = None):
        """Launch the Gradio application."""
        interface = self.create_interface()
        
        # Use config values or defaults
        share = share if share is not None else self.config.get("GRADIO_SHARE", False)
        server_name = server_name or self.config.get("GRADIO_SERVER_NAME", "127.0.0.1")
        server_port = server_port or int(self.config.get("GRADIO_SERVER_PORT", 7860))
        
        print(f"πŸš€ Launching Speech-to-Text Application...")
        print(f"πŸ“ Server: http://{server_name}:{server_port}")
        print(f"🌐 Share: {share}")
        
        interface.launch(
            share=share,
            server_name=server_name,
            server_port=server_port,
            show_error=True,
            quiet=False
        )

def main():
    """Main function to run the application."""
    app = GradioSpeechToTextApp()
    app.launch()

if __name__ == "__main__":
    main()