File size: 8,627 Bytes
a8d5409
2127598
 
 
 
 
 
 
 
 
051072d
2127598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95782c9
2127598
95782c9
2127598
 
95782c9
2127598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d5409
2127598
 
 
 
a8d5409
2127598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750c180
 
 
 
 
ff035d7
750c180
a8d5409
 
 
 
 
 
 
 
 
 
 
 
 
ff035d7
750c180
 
 
 
 
 
a8d5409
 
 
 
ff035d7
750c180
 
 
 
a8d5409
 
 
 
 
 
 
 
 
 
 
750c180
 
ff035d7
750c180
ff035d7
750c180
 
 
ff035d7
750c180
 
ff035d7
750c180
a8d5409
2127598
 
 
ff035d7
2127598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from pydoc import cli
from dotenv import load_dotenv
from openai import OpenAI
from datetime import datetime
from zoneinfo import ZoneInfo
from requests.exceptions import RequestException, Timeout
import json
import requests
from pypdf import PdfReader
import gradio as gr
import os


load_dotenv(override=True)

def push(text: str) -> bool:
    if not text or not isinstance(text, str):
        raise ValueError("`text` must be a non-empty string")

    ts = datetime.now(ZoneInfo("Asia/Kolkata")).isoformat()

    payload = {
        "timestamp": ts,
        "message": text,
    }

    headers = {
        "Content-Type": "application/json",
        "Authorization": "3175641f-82e8-4243tinytools8e62-4a202127c2db"
    }

    try:
        response = requests.post(
            "https://converteasly.com/api/send-feedback",
            json=payload,
            headers=headers,
            timeout=20
        )

        response.raise_for_status()

        return True

    except Timeout:
        print("❌ Request timed out while sending feedback")
        return False

    except RequestException as e:
        print(f"❌ Failed to send feedback: {e}")
        return False

    except Exception as e:
        print(f"❌ Unexpected error: {e}")
        return False



def record_user_details(email, name="Name not provided", notes="not provided"):
    print(f"Recording {name} with email {email} and notes {notes}")
    push(f"Recording {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

def record_unknown_question(question):
    print(f"Recording {question}")
    push(f"Recording {question}")
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {
                "type": "string",
                "description": "The email address of this user"
            },
            "name": {
                "type": "string",
                "description": "The user's name, if they provided it"
            }
            ,
            "notes": {
                "type": "string",
                "description": "Any additional information about the conversation that's worth recording to give context"
            }
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {
                "type": "string",
                "description": "The question that couldn't be answered"
            },
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [{"type": "function", "function": record_user_details_json},
        {"type": "function", "function": record_unknown_question_json}]


class Me:

    def __init__(self):
        self.openai = OpenAI()
        self.name = "Pawan Malhotra"
        reader = PdfReader("me/my-profile.pdf")
        self.linkedin = ""
        for page in reader.pages:
            text = page.extract_text()
            if text:
                self.linkedin += text
        with open("me/summary.txt", "r", encoding="utf-8") as f:
            self.summary = f.read()


    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            print(f"Tool called: {tool_name}", flush=True)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
        return results
    
    def system_prompt(self):
        system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
particularly questions related to {self.name}'s career, background, skills and experience. \
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "

        system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
        system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
        return system_prompt
    
    def chat(self, message, history):
        messages = [
            {"role": "system", "content": self.system_prompt()},
            *history[-6:],  # πŸ”₯ limit history to last N turns
            {"role": "user", "content": message}
        ]

        def run(client, model):
            if client is open_router_client:
                return client.chat.completions.create(
                    model=model,
                    messages=messages,
                    tools=tools
                )
            else:
                return client.chat.completions.create(
                    model=model,
                    messages=messages,
                    tools=tools,
                    max_tokens=512  # πŸ”’ hard cap
                )

        # Clients
        gemini = OpenAI(
            api_key=os.getenv("GOOGLE_API_KEY"),
            base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
        )
        openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        open_router_client = OpenAI(
            api_key=os.getenv("OPEN_ROUTER_API_KEY"),
            base_url="https://openrouter.ai/api/v1"
        )

        try:
            response = run(gemini, "gemini-2.0-flash")
        except Exception as e:
            if "quota" in str(e).lower() or "resource_exhausted" in str(e).lower():
                print("Google Limit Exceeded! Falling to open API")
                try:
                    response = run(openai_client, "gpt-4o-mini")
                except Exception as gpt:
                    if "rate limit" in str(gpt).lower() or "rate_limit_exceeded" in str(gpt).lower():
                        print("Open API rate limit exceeded! Falling to Open Router API")
                        # xiaomi/mimo-v2-flash:free
                        # allenai/olmo-3.1-32b-think:free
                        response = run(open_router_client, "xiaomi/mimo-v2-flash:free")
                    else:
                        raise
            else:
                raise

        choice = response.choices[0]

        # πŸ” Handle tools ONCE (no loops)
        if choice.finish_reason == "tool_calls":
            tool_results = self.handle_tool_call(choice.message.tool_calls)

            messages.append(choice.message)
            messages.extend(tool_results)

            # Final answer (NO tools this time)
            response = run(open_router_client, "xiaomi/mimo-v2-flash:free")
        return response.choices[0].message.content



if __name__ == "__main__":
    me = Me()
    with gr.Blocks(
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            width: 100%;
            margin: auto;
        }
        footer {display: none !important;}
        """
    ) as demo:
        gr.Markdown(
            """
            # 🧠 Virtual Resume Assistant - Pawan Malhotra
            Ask anything about my skills, experience, or projects.
            """
        )

        gr.ChatInterface(
            fn=me.chat,
            type="messages",
            # chatbot=gr.Chatbot(
            #     height=450,
            #     show_copy_button=True,
            #     avatar_images=("πŸ‘€", "πŸ€–")
            # ),
            textbox=gr.Textbox(
                placeholder="Ask about experience, skills, projects...",
                scale=7
            ),
        )
    demo.launch()