|
|
import gradio as gr |
|
|
from gradio_client import Client, handle_file |
|
|
import spaces |
|
|
|
|
|
import os |
|
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1' |
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
|
os.environ["ATTN_BACKEND"] = "flash_attn_3" |
|
|
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json') |
|
|
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1' |
|
|
from datetime import datetime |
|
|
import shutil |
|
|
import cv2 |
|
|
from typing import * |
|
|
import torch |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import base64 |
|
|
import io |
|
|
import tempfile |
|
|
from trellis2.modules.sparse import SparseTensor |
|
|
from trellis2.pipelines import Trellis2ImageTo3DPipeline |
|
|
from trellis2.renderers import EnvMap |
|
|
from trellis2.utils import render_utils |
|
|
import o_voxel |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') |
|
|
MODES = [ |
|
|
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"}, |
|
|
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"}, |
|
|
{"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"}, |
|
|
{"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"}, |
|
|
{"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"}, |
|
|
{"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"}, |
|
|
] |
|
|
STEPS = 8 |
|
|
DEFAULT_MODE = 3 |
|
|
DEFAULT_STEP = 3 |
|
|
|
|
|
|
|
|
css = """ |
|
|
/* Overwrite Gradio Default Style */ |
|
|
.stepper-wrapper { |
|
|
padding: 0; |
|
|
} |
|
|
|
|
|
.stepper-container { |
|
|
padding: 0; |
|
|
align-items: center; |
|
|
} |
|
|
|
|
|
.step-button { |
|
|
flex-direction: row; |
|
|
} |
|
|
|
|
|
.step-connector { |
|
|
transform: none; |
|
|
} |
|
|
|
|
|
.step-number { |
|
|
width: 16px; |
|
|
height: 16px; |
|
|
} |
|
|
|
|
|
.step-label { |
|
|
position: relative; |
|
|
bottom: 0; |
|
|
} |
|
|
|
|
|
.wrap.center.full { |
|
|
inset: 0; |
|
|
height: 100%; |
|
|
} |
|
|
|
|
|
.wrap.center.full.translucent { |
|
|
background: var(--block-background-fill); |
|
|
} |
|
|
|
|
|
.meta-text-center { |
|
|
display: block !important; |
|
|
position: absolute !important; |
|
|
top: unset !important; |
|
|
bottom: 0 !important; |
|
|
right: 0 !important; |
|
|
transform: unset !important; |
|
|
} |
|
|
|
|
|
/* Previewer */ |
|
|
.previewer-container { |
|
|
position: relative; |
|
|
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; |
|
|
width: 100%; |
|
|
height: 722px; |
|
|
margin: 0 auto; |
|
|
padding: 20px; |
|
|
display: flex; |
|
|
flex-direction: column; |
|
|
align-items: center; |
|
|
justify-content: center; |
|
|
} |
|
|
|
|
|
.previewer-container .tips-icon { |
|
|
position: absolute; |
|
|
right: 10px; |
|
|
top: 10px; |
|
|
z-index: 10; |
|
|
border-radius: 10px; |
|
|
color: #fff; |
|
|
background-color: var(--color-accent); |
|
|
padding: 3px 6px; |
|
|
user-select: none; |
|
|
} |
|
|
|
|
|
.previewer-container .tips-text { |
|
|
position: absolute; |
|
|
right: 10px; |
|
|
top: 50px; |
|
|
color: #fff; |
|
|
background-color: var(--color-accent); |
|
|
border-radius: 10px; |
|
|
padding: 6px; |
|
|
text-align: left; |
|
|
max-width: 300px; |
|
|
z-index: 10; |
|
|
transition: all 0.3s; |
|
|
opacity: 0%; |
|
|
user-select: none; |
|
|
} |
|
|
|
|
|
.previewer-container .tips-text p { |
|
|
font-size: 14px; |
|
|
line-height: 1.2; |
|
|
} |
|
|
|
|
|
.tips-icon:hover + .tips-text { |
|
|
display: block; |
|
|
opacity: 100%; |
|
|
} |
|
|
|
|
|
/* Row 1: Display Modes */ |
|
|
.previewer-container .mode-row { |
|
|
width: 100%; |
|
|
display: flex; |
|
|
gap: 8px; |
|
|
justify-content: center; |
|
|
margin-bottom: 20px; |
|
|
flex-wrap: wrap; |
|
|
} |
|
|
.previewer-container .mode-btn { |
|
|
width: 24px; |
|
|
height: 24px; |
|
|
border-radius: 50%; |
|
|
cursor: pointer; |
|
|
opacity: 0.5; |
|
|
transition: all 0.2s; |
|
|
border: 2px solid #ddd; |
|
|
object-fit: cover; |
|
|
} |
|
|
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); } |
|
|
.previewer-container .mode-btn.active { |
|
|
opacity: 1; |
|
|
border-color: var(--color-accent); |
|
|
transform: scale(1.1); |
|
|
} |
|
|
|
|
|
/* Row 2: Display Image */ |
|
|
.previewer-container .display-row { |
|
|
margin-bottom: 20px; |
|
|
min-height: 400px; |
|
|
width: 100%; |
|
|
flex-grow: 1; |
|
|
display: flex; |
|
|
justify-content: center; |
|
|
align-items: center; |
|
|
} |
|
|
.previewer-container .previewer-main-image { |
|
|
max-width: 100%; |
|
|
max-height: 100%; |
|
|
flex-grow: 1; |
|
|
object-fit: contain; |
|
|
display: none; |
|
|
} |
|
|
.previewer-container .previewer-main-image.visible { |
|
|
display: block; |
|
|
} |
|
|
|
|
|
/* Row 3: Custom HTML Slider */ |
|
|
.previewer-container .slider-row { |
|
|
width: 100%; |
|
|
display: flex; |
|
|
flex-direction: column; |
|
|
align-items: center; |
|
|
gap: 10px; |
|
|
padding: 0 10px; |
|
|
} |
|
|
|
|
|
.previewer-container input[type=range] { |
|
|
-webkit-appearance: none; |
|
|
width: 100%; |
|
|
max-width: 400px; |
|
|
background: transparent; |
|
|
} |
|
|
.previewer-container input[type=range]::-webkit-slider-runnable-track { |
|
|
width: 100%; |
|
|
height: 8px; |
|
|
cursor: pointer; |
|
|
background: #ddd; |
|
|
border-radius: 5px; |
|
|
} |
|
|
.previewer-container input[type=range]::-webkit-slider-thumb { |
|
|
height: 20px; |
|
|
width: 20px; |
|
|
border-radius: 50%; |
|
|
background: var(--color-accent); |
|
|
cursor: pointer; |
|
|
-webkit-appearance: none; |
|
|
margin-top: -6px; |
|
|
box-shadow: 0 2px 5px rgba(0,0,0,0.2); |
|
|
transition: transform 0.1s; |
|
|
} |
|
|
.previewer-container input[type=range]::-webkit-slider-thumb:hover { |
|
|
transform: scale(1.2); |
|
|
} |
|
|
|
|
|
/* Overwrite Previewer Block Style */ |
|
|
.gradio-container .padded:has(.previewer-container) { |
|
|
padding: 0 !important; |
|
|
} |
|
|
|
|
|
.gradio-container:has(.previewer-container) [data-testid="block-label"] { |
|
|
position: absolute; |
|
|
top: 0; |
|
|
left: 0; |
|
|
} |
|
|
""" |
|
|
|
|
|
|
|
|
head = """ |
|
|
<script> |
|
|
function refreshView(mode, step) { |
|
|
// 1. Find current mode and step |
|
|
const allImgs = document.querySelectorAll('.previewer-main-image'); |
|
|
for (let i = 0; i < allImgs.length; i++) { |
|
|
const img = allImgs[i]; |
|
|
if (img.classList.contains('visible')) { |
|
|
const id = img.id; |
|
|
const [_, m, s] = id.split('-'); |
|
|
if (mode === -1) mode = parseInt(m.slice(1)); |
|
|
if (step === -1) step = parseInt(s.slice(1)); |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
// 2. Hide ALL images |
|
|
// We select all elements with class 'previewer-main-image' |
|
|
allImgs.forEach(img => img.classList.remove('visible')); |
|
|
|
|
|
// 3. Construct the specific ID for the current state |
|
|
// Format: view-m{mode}-s{step} |
|
|
const targetId = 'view-m' + mode + '-s' + step; |
|
|
const targetImg = document.getElementById(targetId); |
|
|
|
|
|
// 4. Show ONLY the target |
|
|
if (targetImg) { |
|
|
targetImg.classList.add('visible'); |
|
|
} |
|
|
|
|
|
// 5. Update Button Highlights |
|
|
const allBtns = document.querySelectorAll('.mode-btn'); |
|
|
allBtns.forEach((btn, idx) => { |
|
|
if (idx === mode) btn.classList.add('active'); |
|
|
else btn.classList.remove('active'); |
|
|
}); |
|
|
} |
|
|
|
|
|
// --- Action: Switch Mode --- |
|
|
function selectMode(mode) { |
|
|
refreshView(mode, -1); |
|
|
} |
|
|
|
|
|
// --- Action: Slider Change --- |
|
|
function onSliderChange(val) { |
|
|
refreshView(-1, parseInt(val)); |
|
|
} |
|
|
</script> |
|
|
""" |
|
|
|
|
|
|
|
|
empty_html = f""" |
|
|
<div class="previewer-container"> |
|
|
<svg style=" opacity: .5; height: var(--size-5); color: var(--body-text-color);" |
|
|
xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"><rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect><circle cx="8.5" cy="8.5" r="1.5"></circle><polyline points="21 15 16 10 5 21"></polyline></svg> |
|
|
</div> |
|
|
""" |
|
|
|
|
|
|
|
|
def image_to_base64(image): |
|
|
buffered = io.BytesIO() |
|
|
image = image.convert("RGB") |
|
|
image.save(buffered, format="jpeg", quality=85) |
|
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
|
return f"data:image/jpeg;base64,{img_str}" |
|
|
|
|
|
|
|
|
def start_session(req: gr.Request): |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
os.makedirs(user_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
def end_session(req: gr.Request): |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
shutil.rmtree(user_dir) |
|
|
|
|
|
|
|
|
def remove_background(input: Image.Image) -> Image.Image: |
|
|
with tempfile.NamedTemporaryFile(suffix='.png') as f: |
|
|
input = input.convert('RGB') |
|
|
input.save(f.name) |
|
|
output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0] |
|
|
output = Image.open(output) |
|
|
return output |
|
|
|
|
|
|
|
|
def preprocess_image(input: Image.Image) -> Image.Image: |
|
|
""" |
|
|
Preprocess the input image. |
|
|
""" |
|
|
|
|
|
has_alpha = False |
|
|
if input.mode == 'RGBA': |
|
|
alpha = np.array(input)[:, :, 3] |
|
|
if not np.all(alpha == 255): |
|
|
has_alpha = True |
|
|
max_size = max(input.size) |
|
|
scale = min(1, 1024 / max_size) |
|
|
if scale < 1: |
|
|
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS) |
|
|
if has_alpha: |
|
|
output = input |
|
|
else: |
|
|
output = remove_background(input) |
|
|
output_np = np.array(output) |
|
|
alpha = output_np[:, :, 3] |
|
|
bbox = np.argwhere(alpha > 0.8 * 255) |
|
|
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0]) |
|
|
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2 |
|
|
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) |
|
|
size = int(size * 1) |
|
|
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2 |
|
|
output = output.crop(bbox) |
|
|
output = np.array(output).astype(np.float32) / 255 |
|
|
output = output[:, :, :3] * output[:, :, 3:4] |
|
|
output = Image.fromarray((output * 255).astype(np.uint8)) |
|
|
return output |
|
|
|
|
|
|
|
|
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict: |
|
|
shape_slat, tex_slat, res = latents |
|
|
return { |
|
|
'shape_slat_feats': shape_slat.feats.cpu().numpy(), |
|
|
'tex_slat_feats': tex_slat.feats.cpu().numpy(), |
|
|
'coords': shape_slat.coords.cpu().numpy(), |
|
|
'res': res, |
|
|
} |
|
|
|
|
|
|
|
|
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]: |
|
|
shape_slat = SparseTensor( |
|
|
feats=torch.from_numpy(state['shape_slat_feats']).cuda(), |
|
|
coords=torch.from_numpy(state['coords']).cuda(), |
|
|
) |
|
|
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda()) |
|
|
return shape_slat, tex_slat, state['res'] |
|
|
|
|
|
|
|
|
def get_seed(randomize_seed: bool, seed: int) -> int: |
|
|
""" |
|
|
Get the random seed. |
|
|
""" |
|
|
return np.random.randint(0, MAX_SEED) if randomize_seed else seed |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
|
def image_to_3d( |
|
|
image: Image.Image, |
|
|
seed: int, |
|
|
resolution: str, |
|
|
ss_guidance_strength: float, |
|
|
ss_guidance_rescale: float, |
|
|
ss_sampling_steps: int, |
|
|
ss_rescale_t: float, |
|
|
shape_slat_guidance_strength: float, |
|
|
shape_slat_guidance_rescale: float, |
|
|
shape_slat_sampling_steps: int, |
|
|
shape_slat_rescale_t: float, |
|
|
tex_slat_guidance_strength: float, |
|
|
tex_slat_guidance_rescale: float, |
|
|
tex_slat_sampling_steps: int, |
|
|
tex_slat_rescale_t: float, |
|
|
req: gr.Request, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
) -> str: |
|
|
|
|
|
outputs, latents = pipeline.run( |
|
|
image, |
|
|
seed=seed, |
|
|
preprocess_image=False, |
|
|
sparse_structure_sampler_params={ |
|
|
"steps": ss_sampling_steps, |
|
|
"guidance_strength": ss_guidance_strength, |
|
|
"guidance_rescale": ss_guidance_rescale, |
|
|
"rescale_t": ss_rescale_t, |
|
|
}, |
|
|
shape_slat_sampler_params={ |
|
|
"steps": shape_slat_sampling_steps, |
|
|
"guidance_strength": shape_slat_guidance_strength, |
|
|
"guidance_rescale": shape_slat_guidance_rescale, |
|
|
"rescale_t": shape_slat_rescale_t, |
|
|
}, |
|
|
tex_slat_sampler_params={ |
|
|
"steps": tex_slat_sampling_steps, |
|
|
"guidance_strength": tex_slat_guidance_strength, |
|
|
"guidance_rescale": tex_slat_guidance_rescale, |
|
|
"rescale_t": tex_slat_rescale_t, |
|
|
}, |
|
|
pipeline_type={ |
|
|
"512": "512", |
|
|
"1024": "1024_cascade", |
|
|
"1536": "1536_cascade", |
|
|
}[resolution], |
|
|
return_latent=True, |
|
|
) |
|
|
mesh = outputs[0] |
|
|
mesh.simplify(16777216) |
|
|
images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap) |
|
|
state = pack_state(latents) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
|
|
images_html = "" |
|
|
for m_idx, mode in enumerate(MODES): |
|
|
for s_idx in range(STEPS): |
|
|
|
|
|
unique_id = f"view-m{m_idx}-s{s_idx}" |
|
|
|
|
|
|
|
|
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP) |
|
|
vis_class = "visible" if is_visible else "" |
|
|
|
|
|
|
|
|
img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx])) |
|
|
|
|
|
|
|
|
images_html += f""" |
|
|
<img id="{unique_id}" |
|
|
class="previewer-main-image {vis_class}" |
|
|
src="{img_base64}" |
|
|
loading="eager"> |
|
|
""" |
|
|
|
|
|
|
|
|
btns_html = "" |
|
|
for idx, mode in enumerate(MODES): |
|
|
active_class = "active" if idx == DEFAULT_MODE else "" |
|
|
|
|
|
btns_html += f""" |
|
|
<img src="{mode['icon_base64']}" |
|
|
class="mode-btn {active_class}" |
|
|
onclick="selectMode({idx})" |
|
|
title="{mode['name']}"> |
|
|
""" |
|
|
|
|
|
|
|
|
full_html = f""" |
|
|
<div class="previewer-container"> |
|
|
<div class="tips-wrapper"> |
|
|
<div class="tips-icon">💡Tips</div> |
|
|
<div class="tips-text"> |
|
|
<p>● <b>Render Mode</b> - Click on the circular buttons to switch between different render modes.</p> |
|
|
<p>● <b>View Angle</b> - Drag the slider to change the view angle.</p> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
<!-- Row 1: Viewport containing 48 static <img> tags --> |
|
|
<div class="display-row"> |
|
|
{images_html} |
|
|
</div> |
|
|
|
|
|
<!-- Row 2 --> |
|
|
<div class="mode-row" id="btn-group"> |
|
|
{btns_html} |
|
|
</div> |
|
|
|
|
|
<!-- Row 3: Slider --> |
|
|
<div class="slider-row"> |
|
|
<input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)"> |
|
|
</div> |
|
|
</div> |
|
|
""" |
|
|
|
|
|
return state, full_html |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
|
def extract_glb( |
|
|
state: dict, |
|
|
decimation_target: int, |
|
|
texture_size: int, |
|
|
req: gr.Request, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
) -> Tuple[str, str]: |
|
|
""" |
|
|
Extract a GLB file from the 3D model. |
|
|
|
|
|
Args: |
|
|
state (dict): The state of the generated 3D model. |
|
|
decimation_target (int): The target face count for decimation. |
|
|
texture_size (int): The texture resolution. |
|
|
|
|
|
Returns: |
|
|
str: The path to the extracted GLB file. |
|
|
""" |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
shape_slat, tex_slat, res = unpack_state(state) |
|
|
mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0] |
|
|
mesh.simplify(16777216) |
|
|
glb = o_voxel.postprocess.to_glb( |
|
|
vertices=mesh.vertices, |
|
|
faces=mesh.faces, |
|
|
attr_volume=mesh.attrs, |
|
|
coords=mesh.coords, |
|
|
attr_layout=pipeline.pbr_attr_layout, |
|
|
grid_size=res, |
|
|
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]], |
|
|
decimation_target=decimation_target, |
|
|
texture_size=texture_size, |
|
|
remesh=True, |
|
|
remesh_band=1, |
|
|
remesh_project=0, |
|
|
use_tqdm=True, |
|
|
) |
|
|
now = datetime.now() |
|
|
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}" |
|
|
os.makedirs(user_dir, exist_ok=True) |
|
|
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb') |
|
|
glb.export(glb_path, extension_webp=True) |
|
|
torch.cuda.empty_cache() |
|
|
return glb_path, glb_path |
|
|
|
|
|
|
|
|
with gr.Blocks(delete_cache=(600, 600)) as demo: |
|
|
gr.Markdown(""" |
|
|
## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/TRELLIS.2) |
|
|
* Upload an image (preferably with an alpha-masked foreground object) and click Generate to create a 3D asset. |
|
|
* Click Extract GLB to export and download the generated GLB file if you're satisfied with the result. Otherwise, try another time. |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1, min_width=360): |
|
|
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400) |
|
|
|
|
|
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024") |
|
|
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) |
|
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
|
decimation_target = gr.Slider(100000, 500000, label="Decimation Target", value=300000, step=10000) |
|
|
texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024) |
|
|
|
|
|
generate_btn = gr.Button("Generate") |
|
|
|
|
|
with gr.Accordion(label="Advanced Settings", open=False): |
|
|
gr.Markdown("Stage 1: Sparse Structure Generation") |
|
|
with gr.Row(): |
|
|
ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) |
|
|
ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01) |
|
|
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
|
ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1) |
|
|
gr.Markdown("Stage 2: Shape Generation") |
|
|
with gr.Row(): |
|
|
shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) |
|
|
shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01) |
|
|
shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
|
shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) |
|
|
gr.Markdown("Stage 3: Material Generation") |
|
|
with gr.Row(): |
|
|
tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1) |
|
|
tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01) |
|
|
tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
|
tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) |
|
|
|
|
|
with gr.Column(scale=10): |
|
|
with gr.Walkthrough(selected=0) as walkthrough: |
|
|
with gr.Step("Preview", id=0): |
|
|
preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True) |
|
|
extract_btn = gr.Button("Extract GLB") |
|
|
with gr.Step("Extract", id=1): |
|
|
glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0)) |
|
|
download_btn = gr.DownloadButton(label="Download GLB") |
|
|
gr.Markdown("*We are actively working on improving the speed of GLB extraction. Currently, it may take half a minute or more and face count is limited.*") |
|
|
|
|
|
with gr.Column(scale=1, min_width=172): |
|
|
examples = gr.Examples( |
|
|
examples=[ |
|
|
f'assets/example_image/{image}' |
|
|
for image in os.listdir("assets/example_image") |
|
|
], |
|
|
inputs=[image_prompt], |
|
|
fn=preprocess_image, |
|
|
outputs=[image_prompt], |
|
|
run_on_click=True, |
|
|
examples_per_page=18, |
|
|
) |
|
|
|
|
|
output_buf = gr.State() |
|
|
|
|
|
|
|
|
|
|
|
demo.load(start_session) |
|
|
demo.unload(end_session) |
|
|
|
|
|
image_prompt.upload( |
|
|
preprocess_image, |
|
|
inputs=[image_prompt], |
|
|
outputs=[image_prompt], |
|
|
) |
|
|
|
|
|
generate_btn.click( |
|
|
get_seed, |
|
|
inputs=[randomize_seed, seed], |
|
|
outputs=[seed], |
|
|
).then( |
|
|
lambda: gr.Walkthrough(selected=0), outputs=walkthrough |
|
|
).then( |
|
|
image_to_3d, |
|
|
inputs=[ |
|
|
image_prompt, seed, resolution, |
|
|
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t, |
|
|
shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t, |
|
|
tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t, |
|
|
], |
|
|
outputs=[output_buf, preview_output], |
|
|
) |
|
|
|
|
|
extract_btn.click( |
|
|
lambda: gr.Walkthrough(selected=1), outputs=walkthrough |
|
|
).then( |
|
|
extract_glb, |
|
|
inputs=[output_buf, decimation_target, texture_size], |
|
|
outputs=[glb_output, download_btn], |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
|
|
|
|
|
btn_img_base64_strs = {} |
|
|
for i in range(len(MODES)): |
|
|
icon = Image.open(MODES[i]['icon']) |
|
|
MODES[i]['icon_base64'] = image_to_base64(icon) |
|
|
|
|
|
rmbg_client = Client("briaai/BRIA-RMBG-2.0") |
|
|
pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B') |
|
|
pipeline.rembg_model = None |
|
|
pipeline.low_vram = False |
|
|
pipeline.cuda() |
|
|
|
|
|
envmap = { |
|
|
'forest': EnvMap(torch.tensor( |
|
|
cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), |
|
|
dtype=torch.float32, device='cuda' |
|
|
)), |
|
|
'sunset': EnvMap(torch.tensor( |
|
|
cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), |
|
|
dtype=torch.float32, device='cuda' |
|
|
)), |
|
|
'courtyard': EnvMap(torch.tensor( |
|
|
cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), |
|
|
dtype=torch.float32, device='cuda' |
|
|
)), |
|
|
} |
|
|
|
|
|
demo.launch(css=css, head=head) |
|
|
|