Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,307 Bytes
917a889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
from typing import *
from fractions import Fraction
import torch
from . import config
__all__ = [
'VarLenTensor',
'varlen_cat',
'varlen_unbind',
'SparseTensor',
'sparse_cat',
'sparse_unbind',
]
class VarLenTensor:
"""
Sequential tensor with variable length.
Args:
feats (torch.Tensor): Features of the varlen tensor.
layout (List[slice]): Layout of the varlen tensor for each batch
"""
def __init__(self, feats: torch.Tensor, layout: List[slice]=None):
self.feats = feats
self.layout = layout if layout is not None else [slice(0, feats.shape[0])]
self._cache = {}
@staticmethod
def layout_from_seqlen(seqlen: list) -> List[slice]:
"""
Create a layout from a tensor of sequence lengths.
"""
layout = []
start = 0
for l in seqlen:
layout.append(slice(start, start + l))
start += l
return layout
@staticmethod
def from_tensor_list(tensor_list: List[torch.Tensor]) -> 'VarLenTensor':
"""
Create a VarLenTensor from a list of tensors.
"""
feats = torch.cat(tensor_list, dim=0)
layout = []
start = 0
for tensor in tensor_list:
layout.append(slice(start, start + tensor.shape[0]))
start += tensor.shape[0]
return VarLenTensor(feats, layout)
def to_tensor_list(self) -> List[torch.Tensor]:
"""
Convert a VarLenTensor to a list of tensors.
"""
tensor_list = []
for s in self.layout:
tensor_list.append(self.feats[s])
return tensor_list
def __len__(self) -> int:
return len(self.layout)
@property
def shape(self) -> torch.Size:
return torch.Size([len(self.layout), *self.feats.shape[1:]])
def dim(self) -> int:
return len(self.shape)
@property
def ndim(self) -> int:
return self.dim()
@property
def dtype(self):
return self.feats.dtype
@property
def device(self):
return self.feats.device
@property
def seqlen(self) -> torch.LongTensor:
if 'seqlen' not in self._cache:
self._cache['seqlen'] = torch.tensor([l.stop - l.start for l in self.layout], dtype=torch.long, device=self.device)
return self._cache['seqlen']
@property
def cum_seqlen(self) -> torch.LongTensor:
if 'cum_seqlen' not in self._cache:
self._cache['cum_seqlen'] = torch.cat([
torch.tensor([0], dtype=torch.long, device=self.device),
self.seqlen.cumsum(dim=0)
], dim=0)
return self._cache['cum_seqlen']
@property
def batch_boardcast_map(self) -> torch.LongTensor:
"""
Get the broadcast map for the varlen tensor.
"""
if 'batch_boardcast_map' not in self._cache:
self._cache['batch_boardcast_map'] = torch.repeat_interleave(
torch.arange(len(self.layout), device=self.device),
self.seqlen,
)
return self._cache['batch_boardcast_map']
@overload
def to(self, dtype: torch.dtype, *, non_blocking: bool = False, copy: bool = False) -> 'VarLenTensor': ...
@overload
def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None, *, non_blocking: bool = False, copy: bool = False) -> 'VarLenTensor': ...
def to(self, *args, **kwargs) -> 'VarLenTensor':
device = None
dtype = None
if len(args) == 2:
device, dtype = args
elif len(args) == 1:
if isinstance(args[0], torch.dtype):
dtype = args[0]
else:
device = args[0]
if 'dtype' in kwargs:
assert dtype is None, "to() received multiple values for argument 'dtype'"
dtype = kwargs['dtype']
if 'device' in kwargs:
assert device is None, "to() received multiple values for argument 'device'"
device = kwargs['device']
non_blocking = kwargs.get('non_blocking', False)
copy = kwargs.get('copy', False)
new_feats = self.feats.to(device=device, dtype=dtype, non_blocking=non_blocking, copy=copy)
return self.replace(new_feats)
def type(self, dtype):
new_feats = self.feats.type(dtype)
return self.replace(new_feats)
def cpu(self) -> 'VarLenTensor':
new_feats = self.feats.cpu()
return self.replace(new_feats)
def cuda(self) -> 'VarLenTensor':
new_feats = self.feats.cuda()
return self.replace(new_feats)
def half(self) -> 'VarLenTensor':
new_feats = self.feats.half()
return self.replace(new_feats)
def float(self) -> 'VarLenTensor':
new_feats = self.feats.float()
return self.replace(new_feats)
def detach(self) -> 'VarLenTensor':
new_feats = self.feats.detach()
return self.replace(new_feats)
def reshape(self, *shape) -> 'VarLenTensor':
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
return self.replace(new_feats)
def unbind(self, dim: int) -> List['VarLenTensor']:
return varlen_unbind(self, dim)
def replace(self, feats: torch.Tensor) -> 'VarLenTensor':
new_tensor = VarLenTensor(
feats=feats,
layout=self.layout,
)
new_tensor._cache = self._cache
return new_tensor
def to_dense(self, max_length=None) -> torch.Tensor:
"""
Convert a VarLenTensor to a dense representation without for-loop.
Returns:
dense (torch.Tensor): (N, L, C) dense tensor
mask (torch.BoolTensor): (N, L) mask indicating valid positions
"""
N = len(self)
L = max_length or self.seqlen.max().item()
spatial = self.feats.shape[1:]
idx = torch.arange(L, device=self.device).unsqueeze(0).expand(N, L)
mask = (idx < self.seqlen.unsqueeze(1))
mapping = mask.reshape(-1).cumsum(dim=0) - 1
dense = self.feats[mapping]
dense = dense.reshape(N, L, *spatial)
return dense, mask
def __neg__(self) -> 'VarLenTensor':
return self.replace(-self.feats)
def __elemwise__(self, other: Union[torch.Tensor, 'VarLenTensor'], op: callable) -> 'VarLenTensor':
if isinstance(other, torch.Tensor):
try:
other = torch.broadcast_to(other, self.shape)
other = other[self.batch_boardcast_map]
except:
pass
if isinstance(other, VarLenTensor):
other = other.feats
new_feats = op(self.feats, other)
new_tensor = self.replace(new_feats)
return new_tensor
def __add__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.add)
def __radd__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.add)
def __sub__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.sub)
def __rsub__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
def __mul__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.mul)
def __rmul__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.mul)
def __truediv__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, torch.div)
def __rtruediv__(self, other: Union[torch.Tensor, 'VarLenTensor', float]) -> 'VarLenTensor':
return self.__elemwise__(other, lambda x, y: torch.div(y, x))
def __getitem__(self, idx):
if isinstance(idx, int):
idx = [idx]
elif isinstance(idx, slice):
idx = range(*idx.indices(self.shape[0]))
elif isinstance(idx, list):
assert all(isinstance(i, int) for i in idx), f"Only integer indices are supported: {idx}"
elif isinstance(idx, torch.Tensor):
if idx.dtype == torch.bool:
assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
idx = idx.nonzero().squeeze(1)
elif idx.dtype in [torch.int32, torch.int64]:
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
else:
raise ValueError(f"Unknown index type: {idx.dtype}")
else:
raise ValueError(f"Unknown index type: {type(idx)}")
new_feats = []
new_layout = []
start = 0
for new_idx, old_idx in enumerate(idx):
new_feats.append(self.feats[self.layout[old_idx]])
new_layout.append(slice(start, start + len(new_feats[-1])))
start += len(new_feats[-1])
new_feats = torch.cat(new_feats, dim=0).contiguous()
new_tensor = VarLenTensor(feats=new_feats, layout=new_layout)
return new_tensor
def reduce(self, op: str, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
if isinstance(dim, int):
dim = (dim,)
if op =='mean':
red = self.feats.mean(dim=dim, keepdim=keepdim)
elif op =='sum':
red = self.feats.sum(dim=dim, keepdim=keepdim)
elif op == 'prod':
red = self.feats.prod(dim=dim, keepdim=keepdim)
else:
raise ValueError(f"Unsupported reduce operation: {op}")
if dim is None or 0 in dim:
return red
red = torch.segment_reduce(red, reduce=op, lengths=self.seqlen)
return red
def mean(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
return self.reduce(op='mean', dim=dim, keepdim=keepdim)
def sum(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
return self.reduce(op='sum', dim=dim, keepdim=keepdim)
def prod(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
return self.reduce(op='prod', dim=dim, keepdim=keepdim)
def std(self, dim: Optional[Union[int, Tuple[int,...]]] = None, keepdim: bool = False) -> torch.Tensor:
mean = self.mean(dim=dim, keepdim=True)
mean2 = self.replace(self.feats ** 2).mean(dim=dim, keepdim=True)
std = (mean2 - mean ** 2).sqrt()
return std
def __repr__(self) -> str:
return f"VarLenTensor(shape={self.shape}, dtype={self.dtype}, device={self.device})"
def varlen_cat(inputs: List[VarLenTensor], dim: int = 0) -> VarLenTensor:
"""
Concatenate a list of varlen tensors.
Args:
inputs (List[VarLenTensor]): List of varlen tensors to concatenate.
"""
if dim == 0:
new_feats = torch.cat([input.feats for input in inputs], dim=0)
start = 0
new_layout = []
for input in inputs:
for l in input.layout:
new_layout.append(slice(start, start + l.stop - l.start))
start += l.stop - l.start
output = VarLenTensor(feats=new_feats, layout=new_layout)
else:
feats = torch.cat([input.feats for input in inputs], dim=dim)
output = inputs[0].replace(feats)
return output
def varlen_unbind(input: VarLenTensor, dim: int) -> Union[List[VarLenTensor]]:
"""
Unbind a varlen tensor along a dimension.
Args:
input (VarLenTensor): Varlen tensor to unbind.
dim (int): Dimension to unbind.
"""
if dim == 0:
return [input[i] for i in range(len(input))]
else:
feats = input.feats.unbind(dim)
return [input.replace(f) for f in feats]
class SparseTensor(VarLenTensor):
"""
Sparse tensor with support for both torchsparse and spconv backends.
Parameters:
- feats (torch.Tensor): Features of the sparse tensor.
- coords (torch.Tensor): Coordinates of the sparse tensor.
- shape (torch.Size): Shape of the sparse tensor.
- layout (List[slice]): Layout of the sparse tensor for each batch
- data (SparseTensorData): Sparse tensor data used for convolusion
NOTE:
- Data corresponding to a same batch should be contiguous.
- Coords should be in [0, 1023]
"""
SparseTensorData = None
@overload
def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, **kwargs): ...
@overload
def __init__(self, data, shape: Optional[torch.Size] = None, **kwargs): ...
def __init__(self, *args, **kwargs):
# Lazy import of sparse tensor backend
if self.SparseTensorData is None:
import importlib
if config.CONV == 'torchsparse':
self.SparseTensorData = importlib.import_module('torchsparse').SparseTensor
elif config.CONV == 'spconv':
self.SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
method_id = 0
if len(args) != 0:
method_id = 0 if isinstance(args[0], torch.Tensor) else 1
else:
method_id = 1 if 'data' in kwargs else 0
if method_id == 0:
feats, coords, shape = args + (None,) * (3 - len(args))
if 'feats' in kwargs:
feats = kwargs['feats']
del kwargs['feats']
if 'coords' in kwargs:
coords = kwargs['coords']
del kwargs['coords']
if 'shape' in kwargs:
shape = kwargs['shape']
del kwargs['shape']
if config.CONV == 'torchsparse':
self.data = self.SparseTensorData(feats, coords, **kwargs)
elif config.CONV == 'spconv':
spatial_shape = list(coords.max(0)[0] + 1)
self.data = self.SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape[1:], spatial_shape[0], **kwargs)
self.data._features = feats
else:
self.data = {
'feats': feats,
'coords': coords,
}
elif method_id == 1:
data, shape = args + (None,) * (2 - len(args))
if 'data' in kwargs:
data = kwargs['data']
del kwargs['data']
if 'shape' in kwargs:
shape = kwargs['shape']
del kwargs['shape']
self.data = data
self._shape = shape
self._scale = kwargs.get('scale', (Fraction(1, 1), Fraction(1, 1), Fraction(1, 1)))
self._spatial_cache = kwargs.get('spatial_cache', {})
if config.DEBUG:
try:
assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
for i in range(self.shape[0]):
assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
except Exception as e:
print('Debugging information:')
print(f"- Shape: {self.shape}")
print(f"- Layout: {self.layout}")
print(f"- Scale: {self._scale}")
print(f"- Coords: {self.coords}")
raise e
@staticmethod
def from_tensor_list(feats_list: List[torch.Tensor], coords_list: List[torch.Tensor]) -> 'SparseTensor':
"""
Create a SparseTensor from a list of tensors.
"""
feats = torch.cat(feats_list, dim=0)
coords = []
for i, coord in enumerate(coords_list):
coord = torch.cat([torch.full_like(coord[:, :1], i), coord[:, 1:]], dim=1)
coords.append(coord)
coords = torch.cat(coords, dim=0)
return SparseTensor(feats, coords)
def to_tensor_list(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
Convert a SparseTensor to list of tensors.
"""
feats_list = []
coords_list = []
for s in self.layout:
feats_list.append(self.feats[s])
coords_list.append(self.coords[s])
return feats_list, coords_list
def __len__(self) -> int:
return len(self.layout)
def __cal_shape(self, feats, coords):
shape = []
shape.append(coords[:, 0].max().item() + 1)
shape.extend([*feats.shape[1:]])
return torch.Size(shape)
def __cal_layout(self, coords, batch_size):
seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
offset = torch.cumsum(seq_len, dim=0)
layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
return layout
def __cal_spatial_shape(self, coords):
return torch.Size((coords[:, 1:].max(0)[0] + 1).tolist())
@property
def shape(self) -> torch.Size:
if self._shape is None:
self._shape = self.__cal_shape(self.feats, self.coords)
return self._shape
@property
def layout(self) -> List[slice]:
layout = self.get_spatial_cache('layout')
if layout is None:
layout = self.__cal_layout(self.coords, self.shape[0])
self.register_spatial_cache('layout', layout)
return layout
@property
def spatial_shape(self) -> torch.Size:
spatial_shape = self.get_spatial_cache('shape')
if spatial_shape is None:
spatial_shape = self.__cal_spatial_shape(self.coords)
self.register_spatial_cache('shape', spatial_shape)
return spatial_shape
@property
def feats(self) -> torch.Tensor:
if config.CONV == 'torchsparse':
return self.data.F
elif config.CONV == 'spconv':
return self.data.features
else:
return self.data['feats']
@feats.setter
def feats(self, value: torch.Tensor):
if config.CONV == 'torchsparse':
self.data.F = value
elif config.CONV == 'spconv':
self.data.features = value
else:
self.data['feats'] = value
@property
def coords(self) -> torch.Tensor:
if config.CONV == 'torchsparse':
return self.data.C
elif config.CONV == 'spconv':
return self.data.indices
else:
return self.data['coords']
@coords.setter
def coords(self, value: torch.Tensor):
if config.CONV == 'torchsparse':
self.data.C = value
elif config.CONV == 'spconv':
self.data.indices = value
else:
self.data['coords'] = value
@property
def dtype(self):
return self.feats.dtype
@property
def device(self):
return self.feats.device
@property
def seqlen(self) -> torch.LongTensor:
seqlen = self.get_spatial_cache('seqlen')
if seqlen is None:
seqlen = torch.tensor([l.stop - l.start for l in self.layout], dtype=torch.long, device=self.device)
self.register_spatial_cache('seqlen', seqlen)
return seqlen
@property
def cum_seqlen(self) -> torch.LongTensor:
cum_seqlen = self.get_spatial_cache('cum_seqlen')
if cum_seqlen is None:
cum_seqlen = torch.cat([
torch.tensor([0], dtype=torch.long, device=self.device),
self.seqlen.cumsum(dim=0)
], dim=0)
self.register_spatial_cache('cum_seqlen', cum_seqlen)
return cum_seqlen
@property
def batch_boardcast_map(self) -> torch.LongTensor:
"""
Get the broadcast map for the varlen tensor.
"""
batch_boardcast_map = self.get_spatial_cache('batch_boardcast_map')
if batch_boardcast_map is None:
batch_boardcast_map = torch.repeat_interleave(
torch.arange(len(self.layout), device=self.device),
self.seqlen,
)
self.register_spatial_cache('batch_boardcast_map', batch_boardcast_map)
return batch_boardcast_map
@overload
def to(self, dtype: torch.dtype, *, non_blocking: bool = False, copy: bool = False) -> 'SparseTensor': ...
@overload
def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None, *, non_blocking: bool = False, copy: bool = False) -> 'SparseTensor': ...
def to(self, *args, **kwargs) -> 'SparseTensor':
device = None
dtype = None
if len(args) == 2:
device, dtype = args
elif len(args) == 1:
if isinstance(args[0], torch.dtype):
dtype = args[0]
else:
device = args[0]
if 'dtype' in kwargs:
assert dtype is None, "to() received multiple values for argument 'dtype'"
dtype = kwargs['dtype']
if 'device' in kwargs:
assert device is None, "to() received multiple values for argument 'device'"
device = kwargs['device']
non_blocking = kwargs.get('non_blocking', False)
copy = kwargs.get('copy', False)
new_feats = self.feats.to(device=device, dtype=dtype, non_blocking=non_blocking, copy=copy)
new_coords = self.coords.to(device=device, non_blocking=non_blocking, copy=copy)
return self.replace(new_feats, new_coords)
def type(self, dtype):
new_feats = self.feats.type(dtype)
return self.replace(new_feats)
def cpu(self) -> 'SparseTensor':
new_feats = self.feats.cpu()
new_coords = self.coords.cpu()
return self.replace(new_feats, new_coords)
def cuda(self) -> 'SparseTensor':
new_feats = self.feats.cuda()
new_coords = self.coords.cuda()
return self.replace(new_feats, new_coords)
def half(self) -> 'SparseTensor':
new_feats = self.feats.half()
return self.replace(new_feats)
def float(self) -> 'SparseTensor':
new_feats = self.feats.float()
return self.replace(new_feats)
def detach(self) -> 'SparseTensor':
new_coords = self.coords.detach()
new_feats = self.feats.detach()
return self.replace(new_feats, new_coords)
def reshape(self, *shape) -> 'SparseTensor':
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
return self.replace(new_feats)
def unbind(self, dim: int) -> List['SparseTensor']:
return sparse_unbind(self, dim)
def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
if config.CONV == 'torchsparse':
new_data = self.SparseTensorData(
feats=feats,
coords=self.data.coords if coords is None else coords,
stride=self.data.stride,
spatial_range=self.data.spatial_range,
)
new_data._caches = self.data._caches
elif config.CONV == 'spconv':
new_data = self.SparseTensorData(
self.data.features.reshape(self.data.features.shape[0], -1),
self.data.indices,
self.data.spatial_shape,
self.data.batch_size,
self.data.grid,
self.data.voxel_num,
self.data.indice_dict
)
new_data._features = feats
new_data.benchmark = self.data.benchmark
new_data.benchmark_record = self.data.benchmark_record
new_data.thrust_allocator = self.data.thrust_allocator
new_data._timer = self.data._timer
new_data.force_algo = self.data.force_algo
new_data.int8_scale = self.data.int8_scale
if coords is not None:
new_data.indices = coords
else:
new_data = {
'feats': feats,
'coords': self.data['coords'] if coords is None else coords,
}
new_tensor = SparseTensor(
new_data,
shape=torch.Size([self._shape[0]] + list(feats.shape[1:])) if self._shape is not None else None,
scale=self._scale,
spatial_cache=self._spatial_cache
)
return new_tensor
def to_dense(self) -> torch.Tensor:
if config.CONV == 'torchsparse':
return self.data.dense()
elif config.CONV == 'spconv':
return self.data.dense()
else:
spatial_shape = self.spatial_shape
ret = torch.zeros(*self.shape, *spatial_shape, dtype=self.dtype, device=self.device)
idx = [self.coords[:, 0], slice(None)] + self.coords[:, 1:].unbind(1)
ret[tuple(idx)] = self.feats
return ret
@staticmethod
def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
N, C = dim
x = torch.arange(aabb[0], aabb[3] + 1)
y = torch.arange(aabb[1], aabb[4] + 1)
z = torch.arange(aabb[2], aabb[5] + 1)
coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
coords = torch.cat([
torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
coords.repeat(N, 1),
], dim=1).to(dtype=torch.int32, device=device)
feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
return SparseTensor(feats=feats, coords=coords)
def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
new_cache = {}
for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
if k in self._spatial_cache:
new_cache[k] = self._spatial_cache[k]
if k in other._spatial_cache:
if k not in new_cache:
new_cache[k] = other._spatial_cache[k]
else:
new_cache[k].update(other._spatial_cache[k])
return new_cache
def __elemwise__(self, other: Union[torch.Tensor, VarLenTensor], op: callable) -> 'SparseTensor':
if isinstance(other, torch.Tensor):
try:
other = torch.broadcast_to(other, self.shape)
other = other[self.batch_boardcast_map]
except:
pass
if isinstance(other, VarLenTensor):
other = other.feats
new_feats = op(self.feats, other)
new_tensor = self.replace(new_feats)
if isinstance(other, SparseTensor):
new_tensor._spatial_cache = self.__merge_sparse_cache(other)
return new_tensor
def __getitem__(self, idx):
if isinstance(idx, int):
idx = [idx]
elif isinstance(idx, slice):
idx = range(*idx.indices(self.shape[0]))
elif isinstance(idx, list):
assert all(isinstance(i, int) for i in idx), f"Only integer indices are supported: {idx}"
elif isinstance(idx, torch.Tensor):
if idx.dtype == torch.bool:
assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
idx = idx.nonzero().squeeze(1)
elif idx.dtype in [torch.int32, torch.int64]:
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
else:
raise ValueError(f"Unknown index type: {idx.dtype}")
else:
raise ValueError(f"Unknown index type: {type(idx)}")
new_coords = []
new_feats = []
new_layout = []
new_shape = torch.Size([len(idx)] + list(self.shape[1:]))
start = 0
for new_idx, old_idx in enumerate(idx):
new_coords.append(self.coords[self.layout[old_idx]].clone())
new_coords[-1][:, 0] = new_idx
new_feats.append(self.feats[self.layout[old_idx]])
new_layout.append(slice(start, start + len(new_coords[-1])))
start += len(new_coords[-1])
new_coords = torch.cat(new_coords, dim=0).contiguous()
new_feats = torch.cat(new_feats, dim=0).contiguous()
new_tensor = SparseTensor(feats=new_feats, coords=new_coords, shape=new_shape)
new_tensor.register_spatial_cache('layout', new_layout)
return new_tensor
def clear_spatial_cache(self) -> None:
"""
Clear all spatial caches.
"""
self._spatial_cache = {}
def register_spatial_cache(self, key, value) -> None:
"""
Register a spatial cache.
The spatial cache can be any thing you want to cache.
The registery and retrieval of the cache is based on current scale.
"""
scale_key = str(self._scale)
if scale_key not in self._spatial_cache:
self._spatial_cache[scale_key] = {}
self._spatial_cache[scale_key][key] = value
def get_spatial_cache(self, key=None):
"""
Get a spatial cache.
"""
scale_key = str(self._scale)
cur_scale_cache = self._spatial_cache.get(scale_key, {})
if key is None:
return cur_scale_cache
return cur_scale_cache.get(key, None)
def __repr__(self) -> str:
return f"SparseTensor(shape={self.shape}, dtype={self.dtype}, device={self.device})"
def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
"""
Concatenate a list of sparse tensors.
Args:
inputs (List[SparseTensor]): List of sparse tensors to concatenate.
"""
if dim == 0:
start = 0
coords = []
for input in inputs:
coords.append(input.coords.clone())
coords[-1][:, 0] += start
start += input.shape[0]
coords = torch.cat(coords, dim=0)
feats = torch.cat([input.feats for input in inputs], dim=0)
output = SparseTensor(
coords=coords,
feats=feats,
)
else:
feats = torch.cat([input.feats for input in inputs], dim=dim)
output = inputs[0].replace(feats)
return output
def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
"""
Unbind a sparse tensor along a dimension.
Args:
input (SparseTensor): Sparse tensor to unbind.
dim (int): Dimension to unbind.
"""
if dim == 0:
return [input[i] for i in range(input.shape[0])]
else:
feats = input.feats.unbind(dim)
return [input.replace(f) for f in feats]
|