Spaces:
Build error
Build error
no message
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ DATASETS = [
|
|
| 15 |
MAX_N_LABELS = 5
|
| 16 |
|
| 17 |
|
| 18 |
-
def
|
| 19 |
|
| 20 |
for image in dataset:
|
| 21 |
st("Image classification: ", image['file'])
|
|
@@ -29,62 +29,63 @@ def classify_images(classifier_model, dataset_to_classify):
|
|
| 29 |
'''
|
| 30 |
return "done"
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
return "done"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
def main():
|
| 36 |
st.title("Bulk Image Classification")
|
| 37 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
| 38 |
st.write("Soon we will have a dataset template")
|
| 39 |
|
| 40 |
-
|
| 41 |
-
'''
|
| 42 |
-
Model
|
| 43 |
-
'''
|
| 44 |
chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
|
| 45 |
if chosen_model_name is not None:
|
| 46 |
st.write("You selected", chosen_model_name)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
Dataset
|
| 50 |
-
'''
|
| 51 |
shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
|
| 52 |
if shosen_dataset_name is not None:
|
| 53 |
st.write("You selected", shosen_dataset_name)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
'''
|
| 58 |
-
click to classify
|
| 59 |
-
image_object = dataset['pasta'][0]
|
| 60 |
-
'''
|
| 61 |
if chosen_model_name is not None and shosen_dataset_name is not None:
|
| 62 |
if st.button("Classify images"):
|
| 63 |
|
| 64 |
-
|
| 65 |
-
st.write("# FLAG 1")
|
| 66 |
-
|
| 67 |
-
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
| 68 |
-
st.write("# FLAG 2")
|
| 69 |
-
|
| 70 |
-
#Igame
|
| 71 |
-
image_object = dataset['pasta'][0]["image"]
|
| 72 |
-
st.image(image_object, caption="Uploaded Image", use_column_width=True)
|
| 73 |
-
st.write("# FLAG 3")
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
#classifier_pipeline = pipeline('image-classification', model="nateraw/vit-age-classifier", device=0)
|
| 78 |
-
st.write("# FLAG 4")
|
| 79 |
|
| 80 |
-
|
| 81 |
-
classification_result = classify(image_object, classifier_pipeline)
|
| 82 |
-
st.write(classification_result)
|
| 83 |
-
st.write("# FLAG 5")
|
| 84 |
-
classification_obj1.append(classification_result)
|
| 85 |
st.write("# FLAG 6")
|
| 86 |
-
st.write(
|
| 87 |
-
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
main()
|
|
|
|
| 15 |
MAX_N_LABELS = 5
|
| 16 |
|
| 17 |
|
| 18 |
+
def old_classify_images(classifier_model, dataset_to_classify):
|
| 19 |
|
| 20 |
for image in dataset:
|
| 21 |
st("Image classification: ", image['file'])
|
|
|
|
| 29 |
'''
|
| 30 |
return "done"
|
| 31 |
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
| 35 |
+
|
| 36 |
+
#dataset
|
| 37 |
+
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
| 38 |
+
st.write("# FLAG 2")
|
| 39 |
+
|
| 40 |
+
#Image teste load
|
| 41 |
+
image_object = dataset['pasta'][0]["image"]
|
| 42 |
+
st.image(image_object, caption="Uploaded Image", use_column_width=True)
|
| 43 |
+
st.write("# FLAG 3")
|
| 44 |
+
|
| 45 |
+
#modle instance
|
| 46 |
+
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
| 47 |
+
#classifier_pipeline = pipeline('image-classification', model="nateraw/vit-age-classifier", device=0)
|
| 48 |
+
st.write("# FLAG 4")
|
| 49 |
+
#classification
|
| 50 |
+
classification_result = classify(image_object, classifier_pipeline)
|
| 51 |
+
st.write(classification_result)
|
| 52 |
+
st.write("# FLAG 5")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
return "done"
|
| 57 |
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
def main():
|
| 62 |
st.title("Bulk Image Classification")
|
| 63 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
| 64 |
st.write("Soon we will have a dataset template")
|
| 65 |
|
| 66 |
+
#Model
|
|
|
|
|
|
|
|
|
|
| 67 |
chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
|
| 68 |
if chosen_model_name is not None:
|
| 69 |
st.write("You selected", chosen_model_name)
|
| 70 |
|
| 71 |
+
#Dataset
|
|
|
|
|
|
|
| 72 |
shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
|
| 73 |
if shosen_dataset_name is not None:
|
| 74 |
st.write("You selected", shosen_dataset_name)
|
| 75 |
|
| 76 |
+
#click to classify
|
| 77 |
+
#image_object = dataset['pasta'][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
if chosen_model_name is not None and shosen_dataset_name is not None:
|
| 79 |
if st.button("Classify images"):
|
| 80 |
|
| 81 |
+
classification_array =[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
st.write("# FLAG 1")
|
| 84 |
+
classification_result = classify(shosen_dataset_name, chosen_model_name)
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
classification_array.append(classification_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
st.write("# FLAG 6")
|
| 88 |
+
st.write(classification_array)
|
|
|
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|
| 91 |
main()
|