Spaces:
Runtime error
Runtime error
Commit
·
e79434d
1
Parent(s):
7cf5700
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import operator
|
| 8 |
+
|
| 9 |
+
TITLE = "Identity Representation in Diffusion Models"
|
| 10 |
+
|
| 11 |
+
_INTRO = """
|
| 12 |
+
# Identity Representation in Diffusion Models
|
| 13 |
+
|
| 14 |
+
Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/tti-bias/DiffusionBiasExplorer)!
|
| 15 |
+
This demo showcases patterns in images generated by Stable Diffusion and Dalle-2 systems.
|
| 16 |
+
Specifically, images obtained from prompt inputs that span various gender- and ethnicity-related terms are clustered to show how those shape visual representations (more details below).
|
| 17 |
+
We encourage users to take advantage of this app to explore those trends, for example through the lens of the following questions:
|
| 18 |
+
- Find the cluster that has the most prompts denoting a gender or ethnicity that you identify with. Do you think the generated images look like you?
|
| 19 |
+
- Find two clusters that have a similar distribution of gender terms but different distributions of ethnicity terms. Do you see any meaningful differences in how gender is visually represented?
|
| 20 |
+
- Do you find that some ethnicity terms lead to more stereotypical visual representations than others?
|
| 21 |
+
- Do you find that some gender terms lead to more stereotypical visual representations than others?
|
| 22 |
+
|
| 23 |
+
These questions only scratch the surface of what we can learn from demos like this one,
|
| 24 |
+
let us know what you find [in the discussions tab](https://huggingface.co/spaces/tti-bias/DiffusionFaceClustering/discussions),
|
| 25 |
+
or if you think of other relevant questions!
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_CONTEXT = """
|
| 29 |
+
##### How do diffusion-based models represent gender and ethnicity?
|
| 30 |
+
|
| 31 |
+
In order to evaluate the *social biases* that Text-to-Image (TTI) systems may reproduce or exacerbate,
|
| 32 |
+
we need to first understand how the visual representations they generate relate to notions of gender and ethnicity.
|
| 33 |
+
These two aspects of a person's identity, however, ar known as **socialy constructed characteristics**:
|
| 34 |
+
that is to say, gender and ethnicity only exist in interactions between people, they do not have an independent existence based solely on physical (or visual) attributes.
|
| 35 |
+
This means that while we can characterize trends in how the models associate visual features with specific *identity terms in the generation prompts*,
|
| 36 |
+
we should not assign a specific gender or ethnicity to a synthetic figure generated by an ML model.
|
| 37 |
+
|
| 38 |
+
In this app, we instead take a 2-step clustering-based approach. First, we generate 680 images for each model by varying mentions of terms that denote gender or ethnicity in the prompts.
|
| 39 |
+
Then, we use a [VQA-based model](https://huggingface.co/Salesforce/blip-vqa-base) to cluster these images at different granularities (12, 24, or 48 clusters).
|
| 40 |
+
Exploring these clusters allows us to examine trends in the models' associations between visual features and textual representation of social attributes.
|
| 41 |
+
|
| 42 |
+
**Note:** this demo was developed with a limited set of gender- and ethnicity-related terms that are more relevant to the US context as a first approach,
|
| 43 |
+
so users may not always find themselves represented.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
clusters_12 = json.load(open("clusters/id_all_blip_clusters_12.json"))
|
| 47 |
+
clusters_24 = json.load(open("clusters/id_all_blip_clusters_24.json"))
|
| 48 |
+
clusters_48 = json.load(open("clusters/id_all_blip_clusters_48.json"))
|
| 49 |
+
|
| 50 |
+
clusters_by_size = {
|
| 51 |
+
12: clusters_12,
|
| 52 |
+
24: clusters_24,
|
| 53 |
+
48: clusters_48,
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def to_string(label):
|
| 58 |
+
if label == "SD_2":
|
| 59 |
+
label = "Stable Diffusion 2.0"
|
| 60 |
+
elif label == "SD_14":
|
| 61 |
+
label = "Stable Diffusion 1.4"
|
| 62 |
+
elif label == "DallE":
|
| 63 |
+
label = "Dall-E 2"
|
| 64 |
+
elif label == "non-binary":
|
| 65 |
+
label = "non-binary person"
|
| 66 |
+
elif label == "person":
|
| 67 |
+
label = "<i>unmarked</i> (person)"
|
| 68 |
+
elif label == "":
|
| 69 |
+
label = "<i>unmarked</i> ()"
|
| 70 |
+
elif label == "gender":
|
| 71 |
+
label = "gender term"
|
| 72 |
+
return label
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def summarize_clusters(clusters_list, max_terms=3):
|
| 76 |
+
for cl_id, cl_dict in enumerate(clusters_list):
|
| 77 |
+
total = len(cl_dict["img_path_list"])
|
| 78 |
+
gdr_list = cl_dict["labels_gender"]
|
| 79 |
+
eth_list = cl_dict["labels_ethnicity"]
|
| 80 |
+
cl_dict["sentence_desc"] = (
|
| 81 |
+
f"Cluster {cl_id} | \t"
|
| 82 |
+
+ f"gender terms incl.: {gdr_list[0][0].replace('person', 'unmarked(gender)')}"
|
| 83 |
+
+ (
|
| 84 |
+
f" - {gdr_list[1][0].replace('person', 'unmarked(gender)')} | "
|
| 85 |
+
if len(gdr_list) > 1
|
| 86 |
+
else " | "
|
| 87 |
+
)
|
| 88 |
+
+ f"ethnicity terms incl.: {'unmarked(ethnicity)' if eth_list[0][0] == '' else eth_list[0][0]}"
|
| 89 |
+
+ (
|
| 90 |
+
f" - {'unmarked(ethnicity)' if eth_list[1][0] == '' else eth_list[1][0]}"
|
| 91 |
+
if len(eth_list) > 1
|
| 92 |
+
else ""
|
| 93 |
+
)
|
| 94 |
+
)
|
| 95 |
+
cl_dict["summary_desc"] = (
|
| 96 |
+
f"Cluster {cl_id} has {total} images.\n"
|
| 97 |
+
+ f"- The most represented gender terms are {gdr_list[0][0].replace('person', 'unmarked')} ({gdr_list[0][1]})"
|
| 98 |
+
+ (
|
| 99 |
+
f" and {gdr_list[1][0].replace('person', 'unmarked')} ({gdr_list[1][1]}).\n"
|
| 100 |
+
if len(gdr_list) > 1
|
| 101 |
+
else ".\n"
|
| 102 |
+
)
|
| 103 |
+
+ f"- The most represented ethnicity terms are {'unmarked' if eth_list[0][0] == '' else eth_list[0][0]} ({eth_list[0][1]})"
|
| 104 |
+
+ (
|
| 105 |
+
f" and {'unmarked' if eth_list[1][0] == '' else eth_list[1][0]} ({eth_list[1][1]}).\n"
|
| 106 |
+
if len(eth_list) > 1
|
| 107 |
+
else ".\n"
|
| 108 |
+
)
|
| 109 |
+
+ "See below for a more detailed description."
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
for _, clusters_list in clusters_by_size.items():
|
| 114 |
+
summarize_clusters(clusters_list)
|
| 115 |
+
|
| 116 |
+
dropdown_descs = dict(
|
| 117 |
+
(num_clusters, [cl_dct["sentence_desc"] for cl_dct in clusters_list])
|
| 118 |
+
for num_clusters, clusters_list in clusters_by_size.items()
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def describe_cluster(cl_dict, block="label", max_items=4):
|
| 123 |
+
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
| 124 |
+
labels_values.reverse()
|
| 125 |
+
total = float(sum(cl_dict.values()))
|
| 126 |
+
lv_prcnt = list(
|
| 127 |
+
(item[0], round(item[1] * 100 / total, 0)) for item in labels_values
|
| 128 |
+
)
|
| 129 |
+
top_label = lv_prcnt[0][0]
|
| 130 |
+
description_string = (
|
| 131 |
+
"<span>The most represented %s is <b>%s</b>, making up about <b>%d%%</b> of the cluster.</span>"
|
| 132 |
+
% (to_string(block), to_string(top_label), lv_prcnt[0][1])
|
| 133 |
+
)
|
| 134 |
+
description_string += "<p>This is followed by: "
|
| 135 |
+
for lv in lv_prcnt[1 : min(len(lv_prcnt), 1 + max_items)]:
|
| 136 |
+
description_string += "<BR/><b>%s:</b> %d%%" % (to_string(lv[0]), lv[1])
|
| 137 |
+
if len(lv_prcnt) > max_items + 1:
|
| 138 |
+
description_string += "<BR/><b> - Other terms:</b> %d%%" % (
|
| 139 |
+
sum(lv[1] for lv in lv_prcnt[max_items + 1 :]),
|
| 140 |
+
)
|
| 141 |
+
description_string += "</p>"
|
| 142 |
+
return description_string
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def show_cluster(cl_id, num_clusters):
|
| 146 |
+
if not cl_id:
|
| 147 |
+
cl_id = 0
|
| 148 |
+
else:
|
| 149 |
+
cl_id = (
|
| 150 |
+
dropdown_descs[num_clusters].index(cl_id)
|
| 151 |
+
if cl_id in dropdown_descs[num_clusters]
|
| 152 |
+
else 0
|
| 153 |
+
)
|
| 154 |
+
if not num_clusters:
|
| 155 |
+
num_clusters = 12
|
| 156 |
+
cl_dct = clusters_by_size[num_clusters][cl_id]
|
| 157 |
+
images = []
|
| 158 |
+
for i in range(8):
|
| 159 |
+
img_path = "/".join(
|
| 160 |
+
[st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
|
| 161 |
+
)
|
| 162 |
+
im = Image.open(img_path)
|
| 163 |
+
# .resize((256, 256))
|
| 164 |
+
caption = (
|
| 165 |
+
"_".join([img_path.split("/")[0], img_path.split("/")[-1]])
|
| 166 |
+
.replace("Photo_portrait_of_an_", "")
|
| 167 |
+
.replace("Photo_portrait_of_a_", "")
|
| 168 |
+
.replace("SD_v2_random_seeds_identity_", "(SD v.2) ")
|
| 169 |
+
.replace("dataset-identities-dalle2_", "(Dall-E 2) ")
|
| 170 |
+
.replace("SD_v1.4_random_seeds_identity_", "(SD v.1.4) ")
|
| 171 |
+
.replace("_", " ")
|
| 172 |
+
)
|
| 173 |
+
images.append((im, caption))
|
| 174 |
+
model_fig = go.Figure()
|
| 175 |
+
model_fig.add_trace(
|
| 176 |
+
go.Pie(
|
| 177 |
+
labels=list(dict(cl_dct["labels_model"]).keys()),
|
| 178 |
+
values=list(dict(cl_dct["labels_model"]).values()),
|
| 179 |
+
)
|
| 180 |
+
)
|
| 181 |
+
model_description = describe_cluster(dict(cl_dct["labels_model"]), "system")
|
| 182 |
+
|
| 183 |
+
gender_fig = go.Figure()
|
| 184 |
+
gender_fig.add_trace(
|
| 185 |
+
go.Pie(
|
| 186 |
+
labels=list(dict(cl_dct["labels_gender"]).keys()),
|
| 187 |
+
values=list(dict(cl_dct["labels_gender"]).values()),
|
| 188 |
+
)
|
| 189 |
+
)
|
| 190 |
+
gender_description = describe_cluster(dict(cl_dct["labels_gender"]), "gender")
|
| 191 |
+
|
| 192 |
+
ethnicity_fig = go.Figure()
|
| 193 |
+
ethnicity_fig.add_trace(
|
| 194 |
+
go.Bar(
|
| 195 |
+
x=list(dict(cl_dct["labels_ethnicity"]).keys()),
|
| 196 |
+
y=list(dict(cl_dct["labels_ethnicity"]).values()),
|
| 197 |
+
marker_color=px.colors.qualitative.G10,
|
| 198 |
+
)
|
| 199 |
+
)
|
| 200 |
+
ethnicity_description = describe_cluster(
|
| 201 |
+
dict(cl_dct["labels_ethnicity"]), "ethnicity"
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
return (
|
| 205 |
+
clusters_by_size[num_clusters][cl_id]["summary_desc"],
|
| 206 |
+
gender_fig,
|
| 207 |
+
gender_description,
|
| 208 |
+
model_fig,
|
| 209 |
+
model_description,
|
| 210 |
+
ethnicity_fig,
|
| 211 |
+
ethnicity_description,
|
| 212 |
+
images,
|
| 213 |
+
gr.update(choices=dropdown_descs[num_clusters]),
|
| 214 |
+
# gr.update(choices=[i for i in range(num_clusters)]),
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
with gr.Blocks(title=TITLE) as demo:
|
| 219 |
+
gr.Markdown(_INTRO)
|
| 220 |
+
with gr.Accordion(
|
| 221 |
+
"How do diffusion-based models represent gender and ethnicity?", open =False
|
| 222 |
+
):
|
| 223 |
+
gr.Markdown(_CONTEXT)
|
| 224 |
+
gr.HTML(
|
| 225 |
+
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
| 226 |
+
)
|
| 227 |
+
num_clusters = gr.Radio(
|
| 228 |
+
[12, 24, 48],
|
| 229 |
+
value=12,
|
| 230 |
+
label="How many clusters do you want to make from the data?",
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
with gr.Row():
|
| 234 |
+
with gr.Column():
|
| 235 |
+
cluster_id = gr.Dropdown(
|
| 236 |
+
choices=dropdown_descs[num_clusters.value],
|
| 237 |
+
value=0,
|
| 238 |
+
label="Select cluster to visualize:",
|
| 239 |
+
)
|
| 240 |
+
a = gr.Text(label="Cluster summary")
|
| 241 |
+
with gr.Column():
|
| 242 |
+
gallery = gr.Gallery(label="Most representative images in cluster").style(
|
| 243 |
+
grid=[2, 4], height="auto"
|
| 244 |
+
)
|
| 245 |
+
with gr.Row():
|
| 246 |
+
with gr.Column():
|
| 247 |
+
c = gr.Plot(label="How many images from each system?")
|
| 248 |
+
c_desc = gr.HTML(label="")
|
| 249 |
+
with gr.Column(scale=1):
|
| 250 |
+
b = gr.Plot(label="Which gender terms are represented?")
|
| 251 |
+
b_desc = gr.HTML(label="")
|
| 252 |
+
with gr.Column(scale=2):
|
| 253 |
+
d = gr.Plot(label="Which ethnicity terms are present?")
|
| 254 |
+
d_desc = gr.HTML(label="")
|
| 255 |
+
|
| 256 |
+
gr.Markdown(
|
| 257 |
+
"### Plot Descriptions \n\n"
|
| 258 |
+
+ " The **System makeup** plot (*left*) corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2.\n\n"
|
| 259 |
+
+ " The **Gender term makeup** plot (*middle*) shows the number of images based on the input prompts that used the phrases man, woman, non-binary person, and person (unmarked) to describe the figure's gender.\n\n"
|
| 260 |
+
+ " The **Ethnicity label makeup** plot (*right*) corresponds to the number of images from each of the 18 ethnicity descriptions used in the prompts. A blank value denotes unmarked ethnicity.\n\n"
|
| 261 |
+
)
|
| 262 |
+
demo.load(
|
| 263 |
+
fn=show_cluster,
|
| 264 |
+
inputs=[cluster_id, num_clusters],
|
| 265 |
+
outputs=[a, b, b_desc, c, c_desc, d, d_desc, gallery, cluster_id],
|
| 266 |
+
)
|
| 267 |
+
num_clusters.change(
|
| 268 |
+
fn=show_cluster,
|
| 269 |
+
inputs=[cluster_id, num_clusters],
|
| 270 |
+
outputs=[
|
| 271 |
+
a,
|
| 272 |
+
b,
|
| 273 |
+
b_desc,
|
| 274 |
+
c,
|
| 275 |
+
c_desc,
|
| 276 |
+
d,
|
| 277 |
+
d_desc,
|
| 278 |
+
gallery,
|
| 279 |
+
cluster_id,
|
| 280 |
+
],
|
| 281 |
+
)
|
| 282 |
+
cluster_id.change(
|
| 283 |
+
fn=show_cluster,
|
| 284 |
+
inputs=[cluster_id, num_clusters],
|
| 285 |
+
outputs=[a, b, b_desc, c, c_desc, d, d_desc, gallery, cluster_id],
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
if __name__ == "__main__":
|
| 289 |
+
demo.queue().launch(debug=True)
|