import gradio as gr from transformers import pipeline from PIL import Image # Model ID from Hugging Face MODEL_ID = "Ateeqq/ai-vs-human-image-detector" # Load the pipeline pipe = pipeline("image-classification", model=MODEL_ID) def detect_ai_image(image: Image.Image): try: results = pipe(image) # Sort and take top results output = {r['label']: float(r['score']) for r in results} return output except Exception as e: return {"error": str(e)} # Create Gradio interface demo = gr.Interface( fn=detect_ai_image, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=gr.Label(num_top_classes=2, label="Prediction"), title="AI vs Human Image Detector", description="Detect whether an image is AI-generated or human-made using the Ateeqq model.", theme="soft" ) if __name__ == "__main__": demo.launch()