File size: 13,835 Bytes
6274771
 
 
7efaec5
 
6274771
7efaec5
6274771
7efaec5
6274771
 
7efaec5
 
6274771
 
 
 
 
 
7efaec5
6274771
 
7efaec5
 
6274771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efaec5
6274771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efaec5
6274771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efaec5
 
 
 
 
 
 
 
6274771
 
7efaec5
 
6274771
7efaec5
 
 
6274771
 
 
 
7efaec5
6274771
 
 
7efaec5
 
 
 
 
 
6274771
 
 
 
 
 
 
7efaec5
6274771
 
 
7efaec5
 
6274771
 
 
7efaec5
6274771
 
 
7efaec5
 
 
 
 
 
 
 
 
 
 
 
 
6274771
 
 
 
 
 
 
 
7efaec5
 
 
 
 
 
 
 
 
6274771
7efaec5
 
 
6274771
 
 
 
 
 
 
 
 
 
7efaec5
 
6274771
7efaec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6274771
7efaec5
 
 
 
 
 
6274771
7efaec5
 
 
 
6274771
 
 
7efaec5
6274771
7efaec5
 
 
 
 
 
6274771
7efaec5
 
6274771
 
 
 
 
7efaec5
 
 
 
 
 
 
 
 
 
 
6274771
 
7efaec5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# ============================================================================
# Imports
# ============================================================================
import gradio as gr
import numpy as np
import os
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from typing import Any, Dict, List, Optional, Union


# ============================================================================
# Configuration
# ============================================================================
# Get Hugging Face token from environment variable
# In Hugging Face Spaces, add your token as a secret named "HF_TOKEN" in Settings
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")

dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048


# ============================================================================
# Helper Functions
# ============================================================================
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    """Calculate shift parameter for FLUX scheduler based on image sequence length."""
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """Retrieve and set timesteps for the scheduler."""
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


# ============================================================================
# FLUX Pipeline Function
# ============================================================================
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
    enable_live_preview: bool = True,
):
    """
    Custom FLUX pipeline function that yields intermediate images during generation.
    This enables live preview functionality.
    """
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    # 3. Encode prompt
    lora_scale = (
        joint_attention_kwargs.get("scale", None)
        if joint_attention_kwargs is not None
        else None
    )
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    # Handle guidance
    guidance = (
        torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(
            latents.shape[0]
        )
        if self.transformer.config.guidance_embeds
        else None
    )

    # 6. Denoising loop
    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        # Yield intermediate result if live preview is enabled
        if enable_live_preview:
            latents_for_image = self._unpack_latents(
                latents, height, width, self.vae_scale_factor
            )
            latents_for_image = (
                latents_for_image / self.vae.config.scaling_factor
            ) + self.vae.config.shift_factor
            image = self.vae.decode(latents_for_image, return_dict=False)[0]
            yield self.image_processor.postprocess(image, output_type=output_type)[0]

        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()

    # Final image using good_vae
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]


# ============================================================================
# Model Loading
# ============================================================================
print("Loading TAEF1 VAE (fast preview)...")
taef1 = AutoencoderTiny.from_pretrained(
    "madebyollin/taef1", torch_dtype=dtype, token=hf_token
).to(device)

print("Loading FLUX.1-dev VAE (high quality)...")
good_vae = AutoencoderKL.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    subfolder="vae",
    torch_dtype=dtype,
    token=hf_token,
).to(device)

print("Loading FLUX.1-dev pipeline...")
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=dtype,
    vae=taef1,
    token=hf_token,
).to(device)

# Attach the custom pipeline function
pipe.flux_pipe_call_that_returns_an_iterable_of_images = (
    flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
)

torch.cuda.empty_cache()


# ============================================================================
# Inference Function
# ============================================================================
@spaces.GPU(duration=75)
def infer(
    prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    enable_live_preview,
    use_quality_vae,
    progress=gr.Progress(track_tqdm=True),
):
    """Main inference function for generating images from text prompts."""
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    # Determine which VAE to use for final output
    final_vae = good_vae if use_quality_vae else taef1

    # Generate images
    last_image = None
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        output_type="pil",
        good_vae=final_vae,
        enable_live_preview=enable_live_preview,
    ):
        last_image = img
        if enable_live_preview:
            yield img, seed

    # Return final image
    if not enable_live_preview or last_image is not None:
        yield last_image, seed


# ============================================================================
# Gradio UI
# ============================================================================
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
# FLUX.1 [dev] Text-to-Image Generator

12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """
        )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Generate", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Model Features", open=False):
            enable_live_preview = gr.Checkbox(
                label="Enable Live Preview",
                value=True,
                info="Show intermediate images during generation (uses fast VAE for preview)",
            )
            use_quality_vae = gr.Checkbox(
                label="Use Quality VAE for Final Output",
                value=True,
                info="Use high-quality VAE for final image (slower but better quality)",
            )

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1.0,
                    maximum=15.0,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt],
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            enable_live_preview,
            use_quality_vae,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()