Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,835 Bytes
6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 6274771 7efaec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# ============================================================================
# Imports
# ============================================================================
import gradio as gr
import numpy as np
import os
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from typing import Any, Dict, List, Optional, Union
# ============================================================================
# Configuration
# ============================================================================
# Get Hugging Face token from environment variable
# In Hugging Face Spaces, add your token as a secret named "HF_TOKEN" in Settings
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# ============================================================================
# Helper Functions
# ============================================================================
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
"""Calculate shift parameter for FLUX scheduler based on image sequence length."""
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""Retrieve and set timesteps for the scheduler."""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# ============================================================================
# FLUX Pipeline Function
# ============================================================================
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
enable_live_preview: bool = True,
):
"""
Custom FLUX pipeline function that yields intermediate images during generation.
This enables live preview functionality.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# 3. Encode prompt
lora_scale = (
joint_attention_kwargs.get("scale", None)
if joint_attention_kwargs is not None
else None
)
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
# Handle guidance
guidance = (
torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(
latents.shape[0]
)
if self.transformer.config.guidance_embeds
else None
)
# 6. Denoising loop
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# Yield intermediate result if live preview is enabled
if enable_live_preview:
latents_for_image = self._unpack_latents(
latents, height, width, self.vae_scale_factor
)
latents_for_image = (
latents_for_image / self.vae.config.scaling_factor
) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
# Final image using good_vae
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
# ============================================================================
# Model Loading
# ============================================================================
print("Loading TAEF1 VAE (fast preview)...")
taef1 = AutoencoderTiny.from_pretrained(
"madebyollin/taef1", torch_dtype=dtype, token=hf_token
).to(device)
print("Loading FLUX.1-dev VAE (high quality)...")
good_vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="vae",
torch_dtype=dtype,
token=hf_token,
).to(device)
print("Loading FLUX.1-dev pipeline...")
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
vae=taef1,
token=hf_token,
).to(device)
# Attach the custom pipeline function
pipe.flux_pipe_call_that_returns_an_iterable_of_images = (
flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
)
torch.cuda.empty_cache()
# ============================================================================
# Inference Function
# ============================================================================
@spaces.GPU(duration=75)
def infer(
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
enable_live_preview,
use_quality_vae,
progress=gr.Progress(track_tqdm=True),
):
"""Main inference function for generating images from text prompts."""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Determine which VAE to use for final output
final_vae = good_vae if use_quality_vae else taef1
# Generate images
last_image = None
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=final_vae,
enable_live_preview=enable_live_preview,
):
last_image = img
if enable_live_preview:
yield img, seed
# Return final image
if not enable_live_preview or last_image is not None:
yield last_image, seed
# ============================================================================
# Gradio UI
# ============================================================================
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# FLUX.1 [dev] Text-to-Image Generator
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Model Features", open=False):
enable_live_preview = gr.Checkbox(
label="Enable Live Preview",
value=True,
info="Show intermediate images during generation (uses fast VAE for preview)",
)
use_quality_vae = gr.Checkbox(
label="Use Quality VAE for Final Output",
value=True,
info="Use high-quality VAE for final image (slower but better quality)",
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
inputs=[prompt],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
enable_live_preview,
use_quality_vae,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|