Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,451 Bytes
eeef97b 0c204ca eeef97b 2f9402b eeef97b 2f9402b 68b32c5 458170a 2f9402b 68b32c5 2f9402b 68b32c5 2f9402b eeef97b 458170a 68b32c5 eeef97b 68b32c5 458170a eeef97b 68b32c5 eeef97b 68b32c5 eeef97b 5bbf7db eeef97b 5bbf7db eeef97b 1fe3d51 d4bc1dd 1fe3d51 d4bc1dd eeef97b 1fe3d51 eeef97b 5bbf7db eeef97b 5549840 eeef97b 5bbf7db eeef97b 1fe3d51 eeef97b 5549840 06e7e51 5549840 eeef97b 1fe3d51 eeef97b 06e7e51 eeef97b 06e7e51 eeef97b 5bbf7db fd64439 5bbf7db fd64439 eeef97b fd64439 eeef97b 5bbf7db eeef97b 5bbf7db 06e7e51 5bbf7db d4bc1dd 5bbf7db 06e7e51 5bbf7db 06e7e51 5bbf7db 06e7e51 5bbf7db eeef97b 5bbf7db eeef97b 5549840 1fe3d51 5549840 5bbf7db eeef97b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import spaces
import torch
import os
import tempfile
import time
from contextlib import nullcontext
from functools import lru_cache
from typing import Any
import gradio as gr
import numpy as np
from diffusers import DiffusionPipeline
from gradio_litmodel3d import LitModel3D
from huggingface_hub import login
from PIL import Image
# Authenticate with Hugging Face using token from environment
# HF_TOKEN is automatically available in Hugging Face Spaces
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
# Login to Hugging Face - this stores the token for all HF Hub operations
login(token=hf_token)
# Also ensure it's set as environment variable for any libraries that check it directly
os.environ["HF_TOKEN"] = hf_token
print("Authenticated with Hugging Face")
else:
print("Warning: HF_TOKEN not found. Gated models may not be accessible.")
print("Please ensure HF_TOKEN is set in your Space's secrets.")
if not torch.cuda.is_available():
raise Exception("CUDA is not available")
# Set environment variables for building texture_baker and uv_unwrapper
os.environ["USE_CUDA"] = "1"
os.environ["USE_NATIVE_ARCH"] = "0" # Disable native arch to avoid build issues
def build_texture_baker_and_uv_unwrapper():
# Set CUDA architecture list to avoid detection issues
# PyTorch's build system fails when it can't detect GPU architectures
# Setting TORCH_CUDA_ARCH_LIST explicitly prevents this error
if torch.cuda.is_available():
try:
# Try to get the actual compute capability
compute_cap = torch.cuda.get_device_capability(0)
cuda_arch = f"{compute_cap[0]}.{compute_cap[1]}"
os.environ["TORCH_CUDA_ARCH_LIST"] = cuda_arch
print(
f"Detected CUDA capability: {cuda_arch}, setting TORCH_CUDA_ARCH_LIST={cuda_arch}"
)
except Exception as e:
# Fallback to common architectures if detection fails
# Include multiple architectures to support various GPU models
fallback_archs = "7.0;7.5;8.0;8.6;8.9;9.0"
os.environ["TORCH_CUDA_ARCH_LIST"] = fallback_archs
print(
f"Could not detect CUDA capability: {e}, using fallback architectures: {fallback_archs}"
)
else:
# Should not happen since we check above, but just in case
print("Warning: CUDA not available but trying to build with CUDA support")
os.system(
"USE_CUDA=1 USE_NATIVE_ARCH=0 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper"
)
build_texture_baker_and_uv_unwrapper()
import sf3d.utils as sf3d_utils
from sf3d.system import SF3D
# Set up environment
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
# Constants for 3D generation
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 1.6
COND_FOVY_DEG = 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)
generated_files = []
# Initialize device and SF3D model (like official app)
device = sf3d_utils.get_device()
# SF3D model - initialized at startup like official app
# Token is automatically used after login() call above
print("Loading SF3D model...")
sf3d_model = SF3D.from_pretrained(
"stabilityai/stable-fast-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
sf3d_model.eval()
sf3d_model = sf3d_model.to(device)
print("SF3D model loaded!")
# SDXL pipeline - initialized at startup
print("Loading Stable Diffusion XL model...")
sd_pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None,
)
if device == "cuda":
sd_pipeline = sd_pipeline.to(device)
# VAE needs to be in float32 for proper decoding (fixes black image issue)
sd_pipeline.vae.to(torch.float32)
# Enable VAE slicing for better memory and precision handling
try:
sd_pipeline.enable_vae_slicing()
except:
pass
# Enable memory efficient attention if available
try:
sd_pipeline.enable_xformers_memory_efficient_attention()
except:
pass
elif device == "mps":
sd_pipeline = sd_pipeline.to(device)
sd_pipeline.vae.to(torch.float32)
else:
sd_pipeline.enable_model_cpu_offload()
sd_pipeline.vae.to(torch.float32)
print("SDXL model loaded!")
@spaces.GPU()
def generate_text_to_image(
prompt: str, negative_prompt: str = "", num_inference_steps: int = 30
):
"""Generate image from text prompt using SDXL."""
print(f"Generating image from prompt: {prompt}")
# Generate image
with torch.no_grad():
if device == "cuda":
# Ensure VAE is in float32
sd_pipeline.vae.to(torch.float32)
# Temporarily override VAE's forward to ensure float32 decoding
original_vae_decode = sd_pipeline.vae.decode
def vae_decode_wrapper(latents, *args, **kwargs):
# Ensure latents are in float32 for decoding
if latents.dtype != torch.float32:
latents = latents.to(torch.float32)
# Disable autocast for VAE decoding
with torch.cuda.amp.autocast(enabled=False):
return original_vae_decode(latents, *args, **kwargs)
sd_pipeline.vae.decode = vae_decode_wrapper
try:
result = sd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
num_inference_steps=num_inference_steps,
)
image = result.images[0]
finally:
# Restore original decode method
sd_pipeline.vae.decode = original_vae_decode
else:
result = sd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
num_inference_steps=num_inference_steps,
)
image = result.images[0]
return image
def create_batch(input_image: Image) -> dict[str, Any]:
"""Create batch for SF3D model - matches official app structure."""
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
def run_model(input_image, remesh_option, vertex_count, texture_size):
"""Run SF3D model - matches official app structure."""
start = time.time()
with torch.no_grad():
with (
torch.autocast(device_type=device, dtype=torch.bfloat16)
if "cuda" in device
else nullcontext()
):
model_batch = create_batch(input_image)
model_batch = {k: v.to(device) for k, v in model_batch.items()}
trimesh_mesh, _glob_dict = sf3d_model.generate_mesh(
model_batch, texture_size, remesh_option.lower(), vertex_count
)
trimesh_mesh = trimesh_mesh[0]
# Create new tmp file in Gradio temp directory for proper serving
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
tmp_file = tempfile.NamedTemporaryFile(
delete=False, suffix=".glb", dir=os.environ["GRADIO_TEMP_DIR"]
)
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
generated_files.append(tmp_file.name)
print("Generation took:", time.time() - start, "s")
print(f"GLB file saved to: {tmp_file.name}")
return tmp_file.name
@spaces.GPU()
def generate_3d_from_image(
input_image: Image.Image,
remesh_option: str = "none",
vertex_count: int = -1,
texture_size: int = 1024,
) -> str:
"""Generate 3D mesh from image using SF3D with built-in background removal."""
# Convert to RGB if needed (SDXL outputs RGB)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Use SF3D's built-in background removal
# This handles the conversion to RGBA and background removal
print("Removing background using SF3D's built-in function...")
image_with_bg_removed = sf3d_utils.remove_background(input_image)
# Resize foreground if needed (like official app)
foreground_ratio = 0.85
processed_image = sf3d_utils.resize_foreground(
image_with_bg_removed, foreground_ratio, out_size=(COND_WIDTH, COND_HEIGHT)
)
return run_model(processed_image, remesh_option, vertex_count, texture_size)
# Gradio Interface Functions
def step1_generate_image(prompt, negative_prompt, num_steps):
"""Step 1: Generate image from text."""
if not prompt:
return None, None
try:
image = generate_text_to_image(prompt, negative_prompt, num_steps)
return (
image,
image, # Auto-fill Step 2 image input
)
except Exception as e:
return None, None
def step2_generate_3d(image, remesh_option, vertex_count, texture_size):
"""Step 2: Generate 3D model from image (with built-in background removal)."""
if image is None:
return (
None,
None,
)
try:
glb_file = generate_3d_from_image(
image, remesh_option, vertex_count, texture_size
)
return (
glb_file, # Direct file path for LitModel3D
glb_file, # Also return for file download component
)
except Exception as e:
return (
None,
None,
)
# Create Gradio Interface
custom_css = """
.container {
max-width: 50%;
margin: 0 auto;
}
.container textarea[data-testid*="textbox"],
.container input[type="text"] {
width: 100% !important;
box-sizing: border-box;
}
@media (max-width: 768px) {
.container {
max-width: 100%;
}
}
"""
with gr.Blocks(title="Text to Image to 3D", css=custom_css) as demo:
# Wrap all content including header in a centered container
with gr.Column(elem_classes=["container"]):
gr.Markdown(
"""
# Text to Image to 3D Generation
This app allows you to generate 3D models from text prompts in two steps:
1. **Text to Image**: Generate an image using Stable Diffusion XL
2. **3D Generation**: Create a 3D mesh model using Stable Fast 3D (with automatic background removal)
**Instructions:**
- Enter your text prompt and generate an image
- Review the generated image and continue to generate the 3D model
- Background removal is handled automatically by Stable Fast 3D
- View and download your 3D model as a GLB file
"""
)
# Step 1: Text to Image
gr.Markdown("## Step 1: Text to Image")
# Image generation form
prompt = gr.Textbox(
label="Prompt",
placeholder="A cute robot character, 3D render, colorful",
lines=2,
)
negative_prompt = gr.Textbox(
label="Negative Prompt (optional)",
placeholder="blurry, low quality, distorted",
lines=2,
)
num_steps = gr.Slider(
label="Number of Inference Steps",
minimum=20,
maximum=50,
value=30,
step=5,
)
generate_btn = gr.Button("Generate Image", variant="primary")
# Image preview
step1_image = gr.Image(label="Generated Image", type="pil")
# Step 2: 3D Generation
gr.Markdown("## Step 2: 3D Generation")
gr.Markdown(
"*Background removal is handled automatically. You can use the image from Step 1 or upload your own image.*"
)
# 3D generation input image
step2_image_input = gr.Image(
label="Input Image",
type="pil",
sources=["upload", "clipboard"],
)
# 3D generation form
remesh_option = gr.Radio(
choices=["none", "triangle", "quad"],
label="Remeshing Option",
value="none",
)
vertex_count = gr.Slider(
label="Target Vertex Count (-1 for auto)",
minimum=-1,
maximum=20000,
value=-1,
step=100,
)
texture_size = gr.Slider(
label="Texture Size",
minimum=512,
maximum=2048,
value=1024,
step=256,
)
step2_generate_btn = gr.Button("Generate 3D Model", variant="primary")
# 3D model preview
step2_output = LitModel3D(
label="3D Model Preview",
visible=True,
clear_color=[0.0, 0.0, 0.0, 0.0],
height=600, # Set explicit height for better visibility
)
# File download component
step2_download = gr.File(
label="Download 3D Model (GLB)",
visible=True,
)
# Event handlers
generate_btn.click(
fn=step1_generate_image,
inputs=[prompt, negative_prompt, num_steps],
outputs=[step1_image, step2_image_input],
)
step2_generate_btn.click(
fn=step2_generate_3d,
inputs=[step2_image_input, remesh_option, vertex_count, texture_size],
outputs=[step2_output, step2_download],
)
if __name__ == "__main__":
# Delete previous gradio temp dir folder (like official app)
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
import shutil
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
demo.queue()
demo.launch(share=False)
|