Spaces:
Runtime error
Runtime error
| # modified from : 2dgs/gaussian_renderer/__init__.py | |
| import numpy as np | |
| from pdb import set_trace as st | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # from diff_gaussian_rasterization import ( | |
| # GaussianRasterizationSettings, | |
| # GaussianRasterizer, | |
| # ) | |
| from torch.profiler import profile, record_function, ProfilerActivity | |
| from diff_surfel_rasterization import GaussianRasterizationSettings, GaussianRasterizer | |
| from utils.point_utils import depth_to_normal, depth_to_normal_2 | |
| import kiui | |
| class GaussianRenderer2DGS: | |
| def __init__(self, output_size, out_chans, rendering_kwargs, **kwargs): | |
| # self.opt = opt | |
| self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda") | |
| # self.bg_color = torch.tensor([0,0,1], dtype=torch.float32, device="cuda") | |
| self.output_size = output_size | |
| self.out_chans = out_chans | |
| self.rendering_kwargs = rendering_kwargs | |
| # intrinsics | |
| # self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy)) | |
| # self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) | |
| # self.proj_matrix[0, 0] = 1 / self.tan_half_fov | |
| # self.proj_matrix[1, 1] = 1 / self.tan_half_fov | |
| # self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear) | |
| # self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear) | |
| # self.proj_matrix[2, 3] = 1 | |
| def render(self, gaussians, cam_view, cam_view_proj, cam_pos, tanfov, bg_color=None, scale_modifier=1, output_size=None): | |
| # gaussians: [B, N, 14-1] | |
| # cam_view, cam_view_proj: [B, V, 4, 4] | |
| # cam_pos: [B, V, 3] | |
| if output_size is None: | |
| output_size = self.output_size | |
| device = gaussians.device | |
| B, V = cam_view.shape[:2] | |
| assert gaussians.shape[2] == 13 # scale with 2dof | |
| gaussians = gaussians.contiguous().float() # gs rendering in fp32 | |
| # loop of loop... | |
| images = [] | |
| alphas = [] | |
| depths = [] | |
| # surf_normals = [] | |
| rend_normals = [] | |
| dists = [] | |
| if bg_color is None: | |
| bg_color = self.bg_color | |
| for b in range(B): | |
| # pos, opacity, scale, rotation, shs | |
| means3D = gaussians[b, :, 0:3].contiguous().float() | |
| opacity = gaussians[b, :, 3:4].contiguous().float() | |
| scales = gaussians[b, :, 4:6].contiguous().float() | |
| rotations = gaussians[b, :, 6:10].contiguous().float() | |
| rgbs = gaussians[b, :, 10:13].contiguous().float() # [N, 3] | |
| for v in range(V): | |
| # render novel views | |
| view_matrix = cam_view[b, v].float() # world_view_transform | |
| view_proj_matrix = cam_view_proj[b, v].float() | |
| campos = cam_pos[b, v].float() | |
| # with profile(activities=[ProfilerActivity.CUDA, ProfilerActivity.CPU,], record_shapes=True) as prof: | |
| # with record_function("rendering"): | |
| raster_settings = GaussianRasterizationSettings( | |
| image_height=output_size, | |
| image_width=output_size, | |
| tanfovx=tanfov, | |
| tanfovy=tanfov, | |
| bg=bg_color, | |
| scale_modifier=scale_modifier, | |
| viewmatrix=view_matrix, | |
| projmatrix=view_proj_matrix, | |
| sh_degree=0, | |
| campos=campos, | |
| prefiltered=False, | |
| debug=False, | |
| ) | |
| rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
| # Rasterize visible Gaussians to image, obtain their radii (on screen). | |
| # rendered_image, radii, rendered_depth, rendered_alpha = rasterizer( | |
| rendered_image, radii, allmap = rasterizer( | |
| means3D=means3D, | |
| means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device), | |
| shs=None, | |
| colors_precomp=rgbs, | |
| opacities=opacity, | |
| scales=scales, | |
| rotations=rotations, | |
| cov3D_precomp=None, | |
| # cov3D_precomp = cov3D_precomp | |
| ) | |
| # print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=20)) | |
| # with profile(activities=[ProfilerActivity.CUDA, ProfilerActivity.CPU,], record_shapes=True) as prof: | |
| # ! additional regularizations | |
| render_alpha = allmap[1:2] | |
| # get normal map | |
| # transform normal from view space to world space | |
| # with record_function("render_normal"): | |
| render_normal = allmap[2:5] | |
| # render_normal = (render_normal.permute(1,2,0) @ (viewpoint_camera.world_view_transform[:3,:3].T)).permute(2,0,1) | |
| render_normal = (render_normal.permute(1,2,0) @ (view_matrix[:3,:3].T)).permute(2,0,1) | |
| # with record_function("render_depth"): | |
| # get median depth map | |
| render_depth_median = allmap[5:6] | |
| render_depth_median = torch.nan_to_num(render_depth_median, 0, 0) | |
| # get expected depth map | |
| render_depth_expected = allmap[0:1] | |
| render_depth_expected = (render_depth_expected / render_alpha) | |
| render_depth_expected = torch.nan_to_num(render_depth_expected, 0, 0) | |
| # get depth distortion map | |
| render_dist = allmap[6:7] | |
| # psedo surface attributes | |
| # surf depth is either median or expected by setting depth_ratio to 1 or 0 | |
| # for bounded scene, use median depth, i.e., depth_ratio = 1; | |
| # for unbounded scene, use expected depth, i.e., depth_ration = 0, to reduce disk anliasing. | |
| # ! hard coded depth_ratio = 1 for objaverse | |
| surf_depth = render_depth_median | |
| # with record_function("surf_normal"): | |
| # depth_ratio = 1 | |
| # # surf_depth = render_depth_expected * (1-depth_ratio) + (depth_ratio) * render_depth_median | |
| # # assume the depth points form the 'surface' and generate psudo surface normal for regularizations. | |
| # # surf_normal = depth_to_normal(viewpoint_camera, surf_depth) | |
| # surf_normal = depth_to_normal_2(world_view_transform=view_matrix, tanfov=tanfov, W=self.output_size, H=self.output_size, depth=surf_depth) | |
| # surf_normal = surf_normal.permute(2,0,1) | |
| # # remember to multiply with accum_alpha since render_normal is unnormalized. | |
| # surf_normal = surf_normal * (render_alpha).detach() | |
| # ! images | |
| rendered_image = rendered_image.clamp(0, 1) | |
| # images.append(rendered_image) | |
| # alphas.append(rendered_alpha) | |
| # depths.append(rendered_depth) | |
| images.append(rendered_image) | |
| alphas.append(render_alpha) | |
| depths.append(surf_depth) | |
| # surf_normals.append(surf_normal) | |
| rend_normals.append(render_normal) | |
| dists.append(render_dist) | |
| # print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=20)) | |
| # st() | |
| pass | |
| images = torch.stack(images, dim=0).view(B, V, 3, output_size, output_size) | |
| alphas = torch.stack(alphas, dim=0).view(B, V, 1, output_size, output_size) | |
| depths = torch.stack(depths, dim=0).view(B, V, 1, output_size, output_size) | |
| # approximated surface normal? No, direct depth supervision here. | |
| # surf_normals = torch.stack(surf_normals, dim=0).view(B, V, 3, self.output_size, self.output_size) | |
| # disk normal | |
| rend_normals = torch.stack(rend_normals, dim=0).view(B, V, 3, output_size, output_size) | |
| dists = torch.stack(dists, dim=0).view(B, V, 1, output_size, output_size) | |
| # images = torch.stack(images, dim=0).view(B*V, 3, self.output_size, self.output_size) | |
| # alphas = torch.stack(alphas, dim=0).view(B*V, 1, self.output_size, self.output_size) | |
| # depths = torch.stack(depths, dim=0).view(B*V, 1, self.output_size, self.output_size) | |
| return { | |
| "image": images, # [B, V, 3, H, W] | |
| "alpha": alphas, # [B, V, 1, H, W] | |
| "depth": depths, | |
| # "surf_normal": surf_normals, | |
| "rend_normal": rend_normals, | |
| "dist": dists | |
| } | |
| # TODO, save/load 2dgs Gaussians | |
| def save_2dgs_ply(self, path, gaussians, compatible=True): | |
| # gaussians: [B, N, 13] | |
| mkdir_p(os.path.dirname(path)) | |
| assert gaussians.shape[0] == 1, 'only support batch size 1' | |
| from plyfile import PlyData, PlyElement | |
| means3D = gaussians[0, :, 0:3].contiguous().float() | |
| opacity = gaussians[0, :, 3:4].contiguous().float() | |
| scales = gaussians[0, :, 4:6].contiguous().float() | |
| rotations = gaussians[0, :, 6:10].contiguous().float() | |
| shs = gaussians[0, :, 10:].unsqueeze(1).contiguous().float() # [N, 1, 3] | |
| # invert activation to make it compatible with the original ply format | |
| if compatible: | |
| opacity = kiui.op.inverse_sigmoid(opacity) | |
| scales = torch.log(scales + 1e-8) | |
| shs = (shs - 0.5) / 0.28209479177387814 | |
| xyzs = means3D.detach().cpu().numpy() | |
| f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
| opacities = opacity.detach().cpu().numpy() | |
| scales = scales.detach().cpu().numpy() | |
| rotations = rotations.detach().cpu().numpy() | |
| # xyz = self._xyz.detach().cpu().numpy() | |
| # normals = np.zeros_like(xyz) | |
| # f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
| # f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
| # opacities = self._opacity.detach().cpu().numpy() | |
| # scale = self._scaling.detach().cpu().numpy() | |
| # rotation = self._rotation.detach().cpu().numpy() | |
| # dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] | |
| l = ['x', 'y', 'z'] | |
| # All channels except the 3 DC | |
| for i in range(f_dc.shape[1]): | |
| l.append('f_dc_{}'.format(i)) | |
| # save normals also | |
| for i in range(f_dc.shape[1]): | |
| l.append('f_dc_{}'.format(i)) | |
| l.append('opacity') | |
| for i in range(scales.shape[1]): | |
| l.append('scale_{}'.format(i)) | |
| for i in range(rotations.shape[1]): | |
| l.append('rot_{}'.format(i)) | |
| dtype_full = [(attribute, 'f4') for attribute in l] | |
| elements = np.empty(xyz.shape[0], dtype=dtype_full) | |
| # attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1) | |
| # attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) | |
| attributes = np.concatenate((xyz, normals, f_dc, opacities, scale, rotation), axis=1) | |
| elements[:] = list(map(tuple, attributes)) | |
| el = PlyElement.describe(elements, 'vertex') | |
| PlyData([el]).write(path) | |
| # def save_ply(self, gaussians, path, compatible=True): | |
| # # gaussians: [B, N, 14] | |
| # # compatible: save pre-activated gaussians as in the original paper | |
| # assert gaussians.shape[0] == 1, 'only support batch size 1' | |
| # from plyfile import PlyData, PlyElement | |
| # means3D = gaussians[0, :, 0:3].contiguous().float() | |
| # opacity = gaussians[0, :, 3:4].contiguous().float() | |
| # scales = gaussians[0, :, 4:7].contiguous().float() | |
| # rotations = gaussians[0, :, 7:11].contiguous().float() | |
| # shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3] | |
| # # prune by opacity | |
| # mask = opacity.squeeze(-1) >= 0.005 | |
| # means3D = means3D[mask] | |
| # opacity = opacity[mask] | |
| # scales = scales[mask] | |
| # rotations = rotations[mask] | |
| # shs = shs[mask] | |
| # # invert activation to make it compatible with the original ply format | |
| # if compatible: | |
| # opacity = kiui.op.inverse_sigmoid(opacity) | |
| # scales = torch.log(scales + 1e-8) | |
| # shs = (shs - 0.5) / 0.28209479177387814 | |
| # xyzs = means3D.detach().cpu().numpy() | |
| # f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
| # opacities = opacity.detach().cpu().numpy() | |
| # scales = scales.detach().cpu().numpy() | |
| # rotations = rotations.detach().cpu().numpy() | |
| # l = ['x', 'y', 'z'] | |
| # # All channels except the 3 DC | |
| # for i in range(f_dc.shape[1]): | |
| # l.append('f_dc_{}'.format(i)) | |
| # l.append('opacity') | |
| # for i in range(scales.shape[1]): | |
| # l.append('scale_{}'.format(i)) | |
| # for i in range(rotations.shape[1]): | |
| # l.append('rot_{}'.format(i)) | |
| # dtype_full = [(attribute, 'f4') for attribute in l] | |
| # elements = np.empty(xyzs.shape[0], dtype=dtype_full) | |
| # attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1) | |
| # elements[:] = list(map(tuple, attributes)) | |
| # el = PlyElement.describe(elements, 'vertex') | |
| # PlyData([el]).write(path) | |
| def load_2dgs_ply(self, path, compatible=True): | |
| from plyfile import PlyData, PlyElement | |
| plydata = PlyData.read(path) | |
| xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
| np.asarray(plydata.elements[0]["y"]), | |
| np.asarray(plydata.elements[0]["z"])), axis=1) | |
| print("Number of points at loading : ", xyz.shape[0]) | |
| opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
| shs = np.zeros((xyz.shape[0], 3)) | |
| shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
| shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
| shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
| scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
| scales = np.zeros((xyz.shape[0], len(scale_names))) | |
| for idx, attr_name in enumerate(scale_names): | |
| scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
| rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")] | |
| rots = np.zeros((xyz.shape[0], len(rot_names))) | |
| for idx, attr_name in enumerate(rot_names): | |
| rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
| normal_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")] | |
| rots = np.zeros((xyz.shape[0], len(rot_names))) | |
| for idx, attr_name in enumerate(rot_names): | |
| rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
| gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1) | |
| gaussians = torch.from_numpy(gaussians).float() # cpu | |
| if compatible: | |
| gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4]) | |
| gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7]) | |
| gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5 | |
| return gaussians |