File size: 3,791 Bytes
c2c0bbc
 
 
 
 
 
 
 
 
 
cd296d6
c2c0bbc
 
 
 
 
 
 
cd296d6
c2c0bbc
cd296d6
c2c0bbc
cd296d6
c2c0bbc
cd296d6
 
 
 
 
 
 
 
 
 
c2c0bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd296d6
c2c0bbc
 
 
 
 
cd296d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c0bbc
 
cd296d6
 
c2c0bbc
 
 
 
 
 
 
 
 
 
 
cd296d6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
task_categories:
- object-detection
language:
- en
tags:
- computer-vision
- cleanlab
- data-centric-ai
- bounding-boxes
pretty_name: Object Detection Tutorial Dataset
size_categories:
- n<1K
---

# Object Detection Tutorial Dataset

## Dataset Description

This dataset contains object detection annotations and predictions used in the cleanlab tutorial: [Object Detection](https://docs.cleanlab.ai/stable/tutorials/object_detection.html).

The dataset demonstrates how to use cleanlab to identify and correct label issues in object detection datasets, where labels consist of bounding boxes around objects in images.

### Dataset Summary

- **Total Examples**: 118 images with bounding box annotations
- **Task**: Object detection with bounding boxes
- **Files**:
  - `labels.pkl`: Ground truth bounding box labels
  - `predictions.pkl`: Model predictions for bounding boxes
  - `example_images.zip`: Sample images for object detection

### Dataset Structure

```python
from huggingface_hub import hf_hub_download
import pickle
import zipfile

# Download labels
labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl')
with open(labels_path, 'rb') as f:
    labels = pickle.load(f)

# Download predictions
predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl')
with open(predictions_path, 'rb') as f:
    predictions = pickle.load(f)

# Download and extract images
images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
with zipfile.ZipFile(images_path, 'r') as zip_ref:
    zip_ref.extractall('example_images/')
```

### Data Format

- **labels.pkl**: Dictionary containing ground truth bounding boxes in format `[x_min, y_min, x_max, y_max, class_id]`
- **predictions.pkl**: Dictionary containing predicted bounding boxes with confidence scores
- **example_images.zip**: Compressed folder containing image files

## Dataset Creation

This dataset was created for educational purposes to demonstrate cleanlab's capabilities for detecting issues in object detection datasets, such as:
- Incorrectly labeled bounding boxes
- Missing annotations
- Poor quality predictions
- Annotation inconsistencies

## Uses

### Primary Use Case

This dataset is designed for:
1. Learning data-centric AI techniques for object detection
2. Demonstrating cleanlab's object detection issue detection
3. Teaching proper annotation quality assessment workflows

### Example Usage

```python
from huggingface_hub import hf_hub_download
import pickle
from cleanlab.object_detection.summary import object_detection_health_summary

# Download files
labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl')
predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl')

# Load data
with open(labels_path, 'rb') as f:
    labels = pickle.load(f)
with open(predictions_path, 'rb') as f:
    predictions = pickle.load(f)

# Use cleanlab to analyze object detection data quality
summary = object_detection_health_summary(labels, predictions)
print(summary)
```

## Tutorial

For a complete tutorial using this dataset, see:
[Object Detection Tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html)

## Licensing Information

MIT License

## Citation

If you use this dataset in your research, please cite the cleanlab library:

```bibtex
@software{cleanlab,
  author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
  title = {cleanlab},
  year = {2021},
  url = {https://github.com/cleanlab/cleanlab},
}
```

## Contact

- **Maintainers**: Cleanlab Team
- **Repository**: https://github.com/cleanlab/cleanlab
- **Documentation**: https://docs.cleanlab.ai
- **Issues**: https://github.com/cleanlab/cleanlab/issues