LogicGoInfotechSpaces's picture
Update app.py
19fbf4c verified
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
from PIL import Image
torch.set_float32_matmul_precision(["high", "highest"][0])
# Load BiRefNet model
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cpu")
# Preprocessing pipeline
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def process(image):
"""Segment person/body from image with transparent background"""
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cpu")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
# Apply mask as alpha channel (transparent background)
image = image.convert("RGBA")
image.putalpha(mask)
return image # Transparent PNG
def fn(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
result = process(im)
return result
def process_file(f):
"""Process uploaded file and save output as PNG with transparency"""
name_path = f.rsplit(".", 1)[0] + ".png"
im = load_img(f, output_type="pil")
im = im.convert("RGB")
transparent = process(im)
transparent.save(name_path, "PNG") # Save with transparency
return name_path
# Gradio UI Components
slider1 = gr.Image()
slider2 = ImageSlider(label="birefnet", type="pil")
image = gr.Image(label="Upload an image")
image2 = gr.Image(label="Upload an image", type="filepath")
text = gr.Textbox(label="Paste an image URL")
png_file = gr.File(label="Output PNG file")
# Example image
chameleon = load_img("butterfly.jpg", output_type="pil")
# Tab for PNG output
tab3 = gr.Interface(
process_file,
inputs=image2,
outputs=png_file,
examples=["butterfly.jpg"],
api_name="png",
)
# Main demo
demo = gr.TabbedInterface([tab3], ["PNG Output"], title="Body Extractor")
if __name__ == "__main__":
demo.launch(share=True)