Spaces:
Sleeping
Sleeping
| import tensorflow as tf | |
| import torch | |
| import numpy as np | |
| from typing import Optional, Union, Dict | |
| import logging | |
| from transformers import TFAutoModel, AutoTokenizer | |
| class TensorFlowOptimizer: | |
| """ | |
| TensorFlow integration for model optimization and inference acceleration. | |
| Provides TensorFlow Lite conversion and GPU optimization. | |
| """ | |
| def __init__(self): | |
| self.logger = logging.getLogger(__name__) | |
| # Configure TensorFlow | |
| self._configure_tensorflow() | |
| def _configure_tensorflow(self): | |
| """Configure TensorFlow for optimal performance.""" | |
| try: | |
| # Enable mixed precision | |
| tf.keras.mixed_precision.set_global_policy('mixed_float16') | |
| # Configure GPU memory growth | |
| gpus = tf.config.experimental.list_physical_devices('GPU') | |
| if gpus: | |
| for gpu in gpus: | |
| tf.config.experimental.set_memory_growth(gpu, True) | |
| self.logger.info(f"Configured {len(gpus)} GPU(s) for TensorFlow") | |
| else: | |
| self.logger.info("No GPUs found, using CPU") | |
| except Exception as e: | |
| self.logger.warning(f"TensorFlow configuration warning: {e}") | |
| def convert_to_tensorflow_lite(self, model_path: str, output_path: str, | |
| quantize: bool = True) -> bool: | |
| """ | |
| Convert a model to TensorFlow Lite for mobile/edge deployment. | |
| Args: | |
| model_path: Path to the saved model | |
| output_path: Path for the TFLite model | |
| quantize: Whether to apply quantization | |
| Returns: | |
| Success status | |
| """ | |
| try: | |
| # Load the model | |
| converter = tf.lite.TFLiteConverter.from_saved_model(model_path) | |
| if quantize: | |
| # Apply dynamic range quantization | |
| converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
| # For better quantization, use representative dataset | |
| converter.representative_dataset = self._representative_dataset_gen | |
| converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] | |
| converter.inference_input_type = tf.int8 | |
| converter.inference_output_type = tf.int8 | |
| # Convert the model | |
| tflite_model = converter.convert() | |
| # Save the model | |
| with open(output_path, 'wb') as f: | |
| f.write(tflite_model) | |
| self.logger.info(f"Successfully converted model to TFLite: {output_path}") | |
| return True | |
| except Exception as e: | |
| self.logger.error(f"TFLite conversion failed: {e}") | |
| return False | |
| def _representative_dataset_gen(self): | |
| """Generate representative dataset for quantization.""" | |
| # Generate dummy audio data for quantization calibration | |
| for _ in range(100): | |
| # Simulate 16kHz audio for 1 second | |
| dummy_audio = np.random.randn(1, 16000).astype(np.float32) | |
| yield [dummy_audio] | |
| def optimize_for_inference(self, model, input_shape: tuple) -> tf.keras.Model: | |
| """ | |
| Optimize a TensorFlow model for inference. | |
| Args: | |
| model: TensorFlow model to optimize | |
| input_shape: Expected input shape | |
| Returns: | |
| Optimized model | |
| """ | |
| try: | |
| # Create concrete function for optimization | |
| def inference_func(x): | |
| return model(x, training=False) | |
| # Get concrete function | |
| concrete_func = inference_func.get_concrete_function( | |
| tf.TensorSpec(shape=input_shape, dtype=tf.float32) | |
| ) | |
| # Apply graph optimization | |
| optimized_func = tf.function(concrete_func) | |
| self.logger.info("Model optimized for inference") | |
| return optimized_func | |
| except Exception as e: | |
| self.logger.error(f"Inference optimization failed: {e}") | |
| return model | |
| def benchmark_model(self, model, input_shape: tuple, num_runs: int = 100) -> Dict: | |
| """ | |
| Benchmark model performance. | |
| Args: | |
| model: Model to benchmark | |
| input_shape: Input shape for testing | |
| num_runs: Number of benchmark runs | |
| Returns: | |
| Performance metrics | |
| """ | |
| try: | |
| # Generate test input | |
| test_input = tf.random.normal(input_shape) | |
| # Warmup runs | |
| for _ in range(10): | |
| _ = model(test_input) | |
| # Benchmark runs | |
| import time | |
| start_time = time.time() | |
| for _ in range(num_runs): | |
| _ = model(test_input) | |
| end_time = time.time() | |
| # Calculate metrics | |
| total_time = end_time - start_time | |
| avg_time = total_time / num_runs | |
| throughput = num_runs / total_time | |
| metrics = { | |
| "total_time": total_time, | |
| "average_inference_time": avg_time, | |
| "throughput_fps": throughput, | |
| "num_runs": num_runs | |
| } | |
| self.logger.info(f"Benchmark results: {metrics}") | |
| return metrics | |
| except Exception as e: | |
| self.logger.error(f"Benchmarking failed: {e}") | |
| return {} | |
| def create_serving_signature(self, model, input_spec: Dict) -> tf.keras.Model: | |
| """ | |
| Create a model with serving signature for deployment. | |
| Args: | |
| model: TensorFlow model | |
| input_spec: Input specification dictionary | |
| Returns: | |
| Model with serving signature | |
| """ | |
| try: | |
| # Define serving function | |
| def serve_fn(audio_input): | |
| # Preprocess input if needed | |
| processed_input = tf.cast(audio_input, tf.float32) | |
| # Run inference | |
| output = model(processed_input) | |
| # Post-process output if needed | |
| return {"transcription": output} | |
| # Create serving signature | |
| signatures = { | |
| "serving_default": serve_fn.get_concrete_function( | |
| audio_input=tf.TensorSpec( | |
| shape=input_spec.get("shape", [None, None]), | |
| dtype=tf.float32, | |
| name="audio_input" | |
| ) | |
| ) | |
| } | |
| # Save model with signature | |
| model._signatures = signatures | |
| self.logger.info("Created serving signature for model") | |
| return model | |
| except Exception as e: | |
| self.logger.error(f"Serving signature creation failed: {e}") | |
| return model | |
| class TensorFlowSpeechModel: | |
| """ | |
| TensorFlow-native speech-to-text model wrapper. | |
| Provides optimized inference using TensorFlow operations. | |
| """ | |
| def __init__(self, model_name: str, use_mixed_precision: bool = True): | |
| self.model_name = model_name | |
| self.use_mixed_precision = use_mixed_precision | |
| self.logger = logging.getLogger(__name__) | |
| # Initialize TensorFlow optimizer | |
| self.tf_optimizer = TensorFlowOptimizer() | |
| # Load model | |
| self.model = None | |
| self.tokenizer = None | |
| self._load_model() | |
| def _load_model(self): | |
| """Load TensorFlow version of the model.""" | |
| try: | |
| # Try to load TensorFlow version | |
| self.model = TFAutoModel.from_pretrained( | |
| self.model_name, | |
| from_tf=True | |
| ) | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
| # Optimize for inference | |
| if hasattr(self.model, 'config'): | |
| input_shape = (1, self.model.config.max_position_embeddings) | |
| self.model = self.tf_optimizer.optimize_for_inference( | |
| self.model, input_shape | |
| ) | |
| self.logger.info(f"Loaded TensorFlow model: {self.model_name}") | |
| except Exception as e: | |
| self.logger.warning(f"TensorFlow model loading failed: {e}") | |
| self.model = None | |
| def transcribe(self, audio_input: np.ndarray) -> str: | |
| """ | |
| Transcribe audio using TensorFlow model. | |
| Args: | |
| audio_input: Audio data as numpy array | |
| Returns: | |
| Transcribed text | |
| """ | |
| if self.model is None: | |
| raise ValueError("Model not loaded") | |
| try: | |
| # Convert to TensorFlow tensor | |
| audio_tensor = tf.convert_to_tensor(audio_input, dtype=tf.float32) | |
| # Add batch dimension if needed | |
| if len(audio_tensor.shape) == 1: | |
| audio_tensor = tf.expand_dims(audio_tensor, 0) | |
| # Run inference | |
| with tf.device('/GPU:0' if tf.config.list_physical_devices('GPU') else '/CPU:0'): | |
| outputs = self.model(audio_tensor) | |
| # Process outputs (this would depend on the specific model) | |
| # For now, return a placeholder | |
| return "TensorFlow transcription result" | |
| except Exception as e: | |
| self.logger.error(f"TensorFlow transcription failed: {e}") | |
| raise | |
| def benchmark(self, audio_shape: tuple = (1, 16000)) -> Dict: | |
| """Benchmark the TensorFlow model.""" | |
| if self.model is None: | |
| return {"error": "Model not loaded"} | |
| return self.tf_optimizer.benchmark_model(self.model, audio_shape) | |
| def save_optimized_model(self, output_path: str) -> bool: | |
| """Save optimized model for deployment.""" | |
| if self.model is None: | |
| return False | |
| try: | |
| # Create serving signature | |
| input_spec = {"shape": [None, 16000]} # Audio input shape | |
| model_with_signature = self.tf_optimizer.create_serving_signature( | |
| self.model, input_spec | |
| ) | |
| # Save model | |
| tf.saved_model.save(model_with_signature, output_path) | |
| self.logger.info(f"Saved optimized model to: {output_path}") | |
| return True | |
| except Exception as e: | |
| self.logger.error(f"Model saving failed: {e}") | |
| return False | |