Spaces:
Running
on
Zero
Running
on
Zero
| # ============================================================================ | |
| # Imports | |
| # ============================================================================ | |
| import gradio as gr | |
| import numpy as np | |
| import os | |
| import random | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
| from typing import Any, Dict, List, Optional, Union | |
| # ============================================================================ | |
| # Configuration | |
| # ============================================================================ | |
| # Get Hugging Face token from environment variable | |
| # In Hugging Face Spaces, add your token as a secret named "HF_TOKEN" in Settings | |
| hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN") | |
| dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # ============================================================================ | |
| # Helper Functions | |
| # ============================================================================ | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| """Calculate shift parameter for FLUX scheduler based on image sequence length.""" | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """Retrieve and set timesteps for the scheduler.""" | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # ============================================================================ | |
| # FLUX Pipeline Function | |
| # ============================================================================ | |
| def flux_pipe_call_that_returns_an_iterable_of_images( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| max_sequence_length: int = 512, | |
| good_vae: Optional[Any] = None, | |
| enable_live_preview: bool = True, | |
| ): | |
| """ | |
| Custom FLUX pipeline function that yields intermediate images during generation. | |
| This enables live preview functionality. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # 3. Encode prompt | |
| lora_scale = ( | |
| joint_attention_kwargs.get("scale", None) | |
| if joint_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # Handle guidance | |
| guidance = ( | |
| torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand( | |
| latents.shape[0] | |
| ) | |
| if self.transformer.config.guidance_embeds | |
| else None | |
| ) | |
| # 6. Denoising loop | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # Yield intermediate result if live preview is enabled | |
| if enable_live_preview: | |
| latents_for_image = self._unpack_latents( | |
| latents, height, width, self.vae_scale_factor | |
| ) | |
| latents_for_image = ( | |
| latents_for_image / self.vae.config.scaling_factor | |
| ) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents_for_image, return_dict=False)[0] | |
| yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| torch.cuda.empty_cache() | |
| # Final image using good_vae | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor | |
| image = good_vae.decode(latents, return_dict=False)[0] | |
| self.maybe_free_model_hooks() | |
| torch.cuda.empty_cache() | |
| yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
| # ============================================================================ | |
| # Model Loading | |
| # ============================================================================ | |
| print("Loading TAEF1 VAE (fast preview)...") | |
| taef1 = AutoencoderTiny.from_pretrained( | |
| "madebyollin/taef1", torch_dtype=dtype, token=hf_token | |
| ).to(device) | |
| print("Loading FLUX.1-dev VAE (high quality)...") | |
| good_vae = AutoencoderKL.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| subfolder="vae", | |
| torch_dtype=dtype, | |
| token=hf_token, | |
| ).to(device) | |
| print("Loading FLUX.1-dev pipeline...") | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=dtype, | |
| vae=taef1, | |
| token=hf_token, | |
| ).to(device) | |
| # Attach the custom pipeline function | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = ( | |
| flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| ) | |
| torch.cuda.empty_cache() | |
| # ============================================================================ | |
| # Inference Function | |
| # ============================================================================ | |
| def infer( | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| enable_live_preview, | |
| use_quality_vae, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """Main inference function for generating images from text prompts.""" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Determine which VAE to use for final output | |
| final_vae = good_vae if use_quality_vae else taef1 | |
| # Generate images | |
| last_image = None | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| output_type="pil", | |
| good_vae=final_vae, | |
| enable_live_preview=enable_live_preview, | |
| ): | |
| last_image = img | |
| if enable_live_preview: | |
| yield img, seed | |
| # Return final image | |
| if not enable_live_preview or last_image is not None: | |
| yield last_image, seed | |
| # ============================================================================ | |
| # Gradio UI | |
| # ============================================================================ | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cat holding a sign that says hello world", | |
| "an anime illustration of a wiener schnitzel", | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown( | |
| """ | |
| # FLUX.1 [dev] Text-to-Image Generator | |
| 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
| [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
| """ | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Generate", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Model Features", open=False): | |
| enable_live_preview = gr.Checkbox( | |
| label="Enable Live Preview", | |
| value=True, | |
| info="Show intermediate images during generation (uses fast VAE for preview)", | |
| ) | |
| use_quality_vae = gr.Checkbox( | |
| label="Use Quality VAE for Final Output", | |
| value=True, | |
| info="Use high-quality VAE for final image (slower but better quality)", | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1.0, | |
| maximum=15.0, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt], | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| enable_live_preview, | |
| use_quality_vae, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |