vaibhavpandeyvpz's picture
Integrate with Flux.1 [dev]
6274771
# ============================================================================
# Imports
# ============================================================================
import gradio as gr
import numpy as np
import os
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from typing import Any, Dict, List, Optional, Union
# ============================================================================
# Configuration
# ============================================================================
# Get Hugging Face token from environment variable
# In Hugging Face Spaces, add your token as a secret named "HF_TOKEN" in Settings
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# ============================================================================
# Helper Functions
# ============================================================================
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
"""Calculate shift parameter for FLUX scheduler based on image sequence length."""
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""Retrieve and set timesteps for the scheduler."""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# ============================================================================
# FLUX Pipeline Function
# ============================================================================
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
enable_live_preview: bool = True,
):
"""
Custom FLUX pipeline function that yields intermediate images during generation.
This enables live preview functionality.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# 3. Encode prompt
lora_scale = (
joint_attention_kwargs.get("scale", None)
if joint_attention_kwargs is not None
else None
)
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
# Handle guidance
guidance = (
torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(
latents.shape[0]
)
if self.transformer.config.guidance_embeds
else None
)
# 6. Denoising loop
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# Yield intermediate result if live preview is enabled
if enable_live_preview:
latents_for_image = self._unpack_latents(
latents, height, width, self.vae_scale_factor
)
latents_for_image = (
latents_for_image / self.vae.config.scaling_factor
) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
# Final image using good_vae
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
# ============================================================================
# Model Loading
# ============================================================================
print("Loading TAEF1 VAE (fast preview)...")
taef1 = AutoencoderTiny.from_pretrained(
"madebyollin/taef1", torch_dtype=dtype, token=hf_token
).to(device)
print("Loading FLUX.1-dev VAE (high quality)...")
good_vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="vae",
torch_dtype=dtype,
token=hf_token,
).to(device)
print("Loading FLUX.1-dev pipeline...")
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
vae=taef1,
token=hf_token,
).to(device)
# Attach the custom pipeline function
pipe.flux_pipe_call_that_returns_an_iterable_of_images = (
flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
)
torch.cuda.empty_cache()
# ============================================================================
# Inference Function
# ============================================================================
@spaces.GPU(duration=75)
def infer(
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
enable_live_preview,
use_quality_vae,
progress=gr.Progress(track_tqdm=True),
):
"""Main inference function for generating images from text prompts."""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Determine which VAE to use for final output
final_vae = good_vae if use_quality_vae else taef1
# Generate images
last_image = None
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=final_vae,
enable_live_preview=enable_live_preview,
):
last_image = img
if enable_live_preview:
yield img, seed
# Return final image
if not enable_live_preview or last_image is not None:
yield last_image, seed
# ============================================================================
# Gradio UI
# ============================================================================
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# FLUX.1 [dev] Text-to-Image Generator
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Model Features", open=False):
enable_live_preview = gr.Checkbox(
label="Enable Live Preview",
value=True,
info="Show intermediate images during generation (uses fast VAE for preview)",
)
use_quality_vae = gr.Checkbox(
label="Use Quality VAE for Final Output",
value=True,
info="Use high-quality VAE for final image (slower but better quality)",
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
inputs=[prompt],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
enable_live_preview,
use_quality_vae,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()