Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
License:
| license: mit | |
| task_categories: | |
| - object-detection | |
| language: | |
| - en | |
| tags: | |
| - computer-vision | |
| - cleanlab | |
| - data-centric-ai | |
| - bounding-boxes | |
| pretty_name: Object Detection Tutorial Dataset | |
| size_categories: | |
| - n<1K | |
| # Object Detection Tutorial Dataset | |
| ## Dataset Description | |
| This dataset contains object detection annotations and predictions used in the cleanlab tutorial: [Object Detection](https://docs.cleanlab.ai/stable/tutorials/object_detection.html). | |
| The dataset demonstrates how to use cleanlab to identify and correct label issues in object detection datasets, where labels consist of bounding boxes around objects in images. | |
| ### Dataset Summary | |
| - **Total Examples**: 118 images with bounding box annotations | |
| - **Task**: Object detection with bounding boxes | |
| - **Files**: | |
| - `labels.pkl`: Ground truth bounding box labels | |
| - `predictions.pkl`: Model predictions for bounding boxes | |
| - `example_images.zip`: Sample images for object detection | |
| ### Dataset Structure | |
| ```python | |
| from huggingface_hub import hf_hub_download | |
| import pickle | |
| import zipfile | |
| # Download labels | |
| labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl') | |
| with open(labels_path, 'rb') as f: | |
| labels = pickle.load(f) | |
| # Download predictions | |
| predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl') | |
| with open(predictions_path, 'rb') as f: | |
| predictions = pickle.load(f) | |
| # Download and extract images | |
| images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip') | |
| with zipfile.ZipFile(images_path, 'r') as zip_ref: | |
| zip_ref.extractall('example_images/') | |
| ``` | |
| ### Data Format | |
| - **labels.pkl**: Dictionary containing ground truth bounding boxes in format `[x_min, y_min, x_max, y_max, class_id]` | |
| - **predictions.pkl**: Dictionary containing predicted bounding boxes with confidence scores | |
| - **example_images.zip**: Compressed folder containing image files | |
| ## Dataset Creation | |
| This dataset was created for educational purposes to demonstrate cleanlab's capabilities for detecting issues in object detection datasets, such as: | |
| - Incorrectly labeled bounding boxes | |
| - Missing annotations | |
| - Poor quality predictions | |
| - Annotation inconsistencies | |
| ## Uses | |
| ### Primary Use Case | |
| This dataset is designed for: | |
| 1. Learning data-centric AI techniques for object detection | |
| 2. Demonstrating cleanlab's object detection issue detection | |
| 3. Teaching proper annotation quality assessment workflows | |
| ### Example Usage | |
| ```python | |
| from huggingface_hub import hf_hub_download | |
| import pickle | |
| from cleanlab.object_detection.summary import object_detection_health_summary | |
| # Download files | |
| labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl') | |
| predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl') | |
| # Load data | |
| with open(labels_path, 'rb') as f: | |
| labels = pickle.load(f) | |
| with open(predictions_path, 'rb') as f: | |
| predictions = pickle.load(f) | |
| # Use cleanlab to analyze object detection data quality | |
| summary = object_detection_health_summary(labels, predictions) | |
| print(summary) | |
| ``` | |
| ## Tutorial | |
| For a complete tutorial using this dataset, see: | |
| [Object Detection Tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html) | |
| ## Licensing Information | |
| MIT License | |
| ## Citation | |
| If you use this dataset in your research, please cite the cleanlab library: | |
| ```bibtex | |
| @software{cleanlab, | |
| author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas}, | |
| title = {cleanlab}, | |
| year = {2021}, | |
| url = {https://github.com/cleanlab/cleanlab}, | |
| } | |
| ``` | |
| ## Contact | |
| - **Maintainers**: Cleanlab Team | |
| - **Repository**: https://github.com/cleanlab/cleanlab | |
| - **Documentation**: https://docs.cleanlab.ai | |
| - **Issues**: https://github.com/cleanlab/cleanlab/issues | |